
MEASUREMENT OF A WEAK POLARIZATION SENSITIVITY
TO THE BEAM ORBIT OF THE CEBAF ACCELERATOR

BY

JOSEPH MICHAEL GRAMES

B.S., Stevens Institute of Technology, 1992
M.S., University of Illinois at Urbana-Champaign, 1994

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Physics

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2000

Urbana, Illinois



c© Copyright by Joseph Michael Grames, 2000



MEASUREMENT OF A WEAK POLARIZATION SENSITIVITY
TO THE BEAM ORBIT OF THE CEBAF ACCELERATOR

Joseph Michael Grames, Ph.D.
Department of Physics

University of Illinois at Urbana-Champaign, 2000
Douglas H. Beck, Charles K. Sinclair, Co–Advisors

An accelerator-based experiment was performed using the CEBAF accelera-

tor of the Thomas Jefferson National Accelerator Facility to investigate a predicted

sensitivity of the beam polarization to the vertical betatron orbit in the recirculation

arcs. This is the first measurement of any such effect at CEBAF, and provides in-

formation about the polarized beam delivery performance of the accelerator. A brief

description of the accelerator is given, followed by the experimental methods used

and the relevant issues involved in measuring a small (∼ 10−2) change in the beam

polarization. Results of measurements of the polarization sensitivity parameters and

the machine energy by polarization transport techniques are presented. The parame-

ters were obtained by measurement of the strength of the effect as a function of orbit

amplitude and spin orientation, to confirm the predicted coupling between the spin

orientation and the quadrupole fields in the beam transport system. This experiment

included characterizing the injector spin manipulation system and 5 MeV Mott po-

larimeter, modeling of the polarization transport of the accelerator, installation of

magnets to create a modulated orbit perturbation in a single recirculation arc, and

detailed studies of the Hall C Møller polarimeter.
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Chapter 1

Introduction

1.1 History

The use of beams of polarized particles in nuclear and high energy physics experiments

provides an important degree of freedom in understanding fundamental interactions.

In particular, the spin structure of nucleons can be probed using a beam of polarized

electrons in conjunction with either a polarized target or recoil polarimetry, or by

parity violation experiments. However, a balance has historically been struck between

the desirability of this additional degree of freedom for physics experiments and the

effort required to produce polarized beams and to characterize and control them in

accelerators [Mo84].

In this way, the domain of accelerator physics, or beam physics, involving the

development of polarized beam sources and the underlying transport phenomena of

polarized beams and their dependence on the beam energy, orbit, charge delivered,

and the accelerator magnetic lattice design parameters is important. Specifically, the

ensemble of particle spins, which constitute the polarization of such beams, depend

upon their trajectories in accelerators. This significance of the particle spin in accel-

erators is better understood by first considering the development of the concept of

spin.

In 1925, Uhlenbeck and Goudsmit introduced the idea [Uh25] that a free electron

retained an angular momentum, separate from its bound orbital angular momentum,
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to describe the anomalous Zeeman effect. They proposed an intrinsic angular mo-

mentum, or electron spin �s, which could take only quantized values of ±h̄/2 projected

along a quantization axis. The spin is related to the magnetic moment of the electron,

�µ, by

�µ =
ge

2mec
�s, (1.1)

where e and me are the electronic charge and mass, and c is the speed of light. The

interaction potential of the two spin states of an orbital electron in a magnetic field

result in the observed energy splittings. Their explanation made use of an empirical

gyromagnetic factor (g) shown in Equation 1.1. Using g = 2 they explained the

anomalous Zeeman effect (multiplet splittings), but not the observed fine structure

splitting size. The cause of their discrepancy was uncovered in 1926 following work by

Thomas [Th26]. He was prompted to investigate the precession of an electron with a

magnetic moment orbiting a hydrogen atom relativistically. He showed that a purely

kinematic precession arises which when properly included gave both the Zeeman effect

and the multiplet splittings, while retaining the value g = 2. Later, the Dirac equation

provided an exact relativistic solution of quantum mechanics, predicting the existence

of spin–1
2

particles (and anti–particles), and independently predicting g = 2. Higher

order quantum electrodynamic (QED) corrections to the electron interaction modifies

this value, resulting in the theoretically calculated value [Ki81] of the gyromagnetic

factor of an electron,(
g − 2

2

)
thy

= (1159652460± 202) × 10−12. (1.2)

Experimentally, the value has been measured [Co87],(
g − 2

2

)
exp

= (1159652193± 10) × 10−12, (1.3)

providing excellent agreement with theory.

Others had considered the spin motion of an electron in traversing electromagnetic

fields, but in 1959 Bargmann, Michel, and Telegdi [Ba59] re-cast Thomas’ equation

of spin motion by applying the theorem of Ehrenfest to the quantum mechanical
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spin operator. This theorem states that the expectation value of an observable to a

quantum mechanical solution should follow the classical limit. In this way, the well–

known BMT equation (discussed in Section 2.1.1) was developed, solving the classical

equation of spin motion for a particle moving relativistically in an electromagnetic

potential.

This description for the motion of a spin–1
2

particle found direct use in under-

standing the polarization, or ensemble average, for a large collection of particle spins

found in accelerator beams. Two historical examples demonstrate this point. In

1959, Froissart and Stora [Fr60] found that the polarization of a proton beam stored

in a synchrocyclotron accelerator was lost. The effect was explained by treating the

motion of the proton spins of the particle beam through field inhomogeneities of the

magnets. Their work prompted further investigation, beginning the study of what are

now known as depolarization resonances. This phenomena is necessarily analyzed in

the design, and then routinely tested in the practice, of particle storage rings. In 1964,

Sokolov and Ternov [So64] described the self–polarizing effect of an electron beam in a

storage ring by the emission of synchrotron radiation. This effect prompted the design

and construction of polarimeters to measure the polarization of an electron beam in

a storage ring. In this way, spin motion has been studied in storage rings, designed to

produce high energy beams of polarized electrons, over the past 30 years. Conversely,

linear accelerator designs, for which there is no self–polarization of the electron beam,

attracted less interest for studying their spin transport properties. However, advances

of polarized electron sources began to meet the requirements for producing accelera-

tor quality beams in the early 1970’s. Consequently, linear accelerator facilities have

been built and are proposed with the capability to support requirements for nuclear

and high energy polarized beam experiments. These facilities require testing of their

polarization transport properties.

Returning to the fundamental issue, it is important to recognize that the tools for

treating the spin motion of electrons transported through accelerators is rooted in

the basic understanding of the motion of the quantum mechanical spin of an electron
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moving (relativistically) in electromagnetic fields. Whether the accelerator fits in a

university laboratory or spans many kilometers and adjoining countries, the integra-

tion of the classical equation of motion of the electron spin in the electromagnetic

fields it encounters along its trajectory uniquely determine its spin motion.

1.2 Motivation

The physics of transporting a polarized electron beam in an accelerator has been

largely studied for storage rings. In this case, the electron spin is rapidly precessing

in the bending dipole magnetic fields along the ring. Imperfections in the stable beam

orbit, magnetic field inhomogeneities, and finite beam size during many revolutions

of the accelerator can result in strong depolarization resonances. However, when

transporting a polarized beam through an accelerator a single time (linear transport

system) or a few circuits (recirculation transport system) the effects of the beam orbit

(�r, �p), energy (E), energy spread (∆E
E

), beam size (σx or σy), and accelerator imper-

fections are different. In a linear transport system the storage time is significantly

reduced (microseconds compared with hours). While the magnetic system may still

have periodic magnetic errors, the recirculation number is very low (single or few–pass

compared with � 106 turns of the storage ring or between 103 and 106 turns for a

pulse stretcher ring). Yet, the effects of transporting a polarized beam in a linear or

recirculation accelerator can be significant.

The development and progress of semiconductor photoemission polarized electron

sources now plays a role in the design of such accelerators. Electron sources of this

sort can deliver high quality beams of polarized electrons which can be directly in-

jected into an accelerator without the need to store the beam in a circular accelerator

to build–up the beam polarization. An example, which is the focus of investigation

for this work, is the CEBAF (Continuous Electron Beam Accelerator Facility) ac-

celerator located at the Thomas Jefferson National Accelerator Facility in Newport

News, Virginia. A simple description of this accelerator is shown in Figure 1.1. A
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more detailed description of the accelerator and its components is given in Chapter

2 and Chapter 3. The concept of this accelerator is straight forward. A polarized
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Figure 1.1: Layout of the injector, recirculating accelerator and experimental end
stations. The view not shown to scale. Figure courtesy of M. Stewart.

electron gun produces a continuous series of electron bunches at the characteristic

radiofrequency (RF) of the accelerator, 1497 MHz. The polarized gun source is based

on photoemission, by an incident circularly polarized laser beam, from semiconductor

photocathodes (gallium arsenide type). This continuous beam of electron bunches is

accelerated to 45 MeV and then injected into the main accelerator (north linac) at

relativistic speed (velectron ≈ c). As the beam passes through the linac it sees a repeat-

ing pattern of magnets and superconducting accelerating cavities. The cavities are

the basic accelerating structures, and the magnets focus and steer the beam. As the

beam is transported through the north linac it gains a nominal energy of 400 MeV.

The beam then exits the linac and enters a recirculation arc which transports it to

the entrance of the south linac (another 400 MeV gain); at the end of the south linac

a similar arc transports the beam to the entrance of the north linac. Electrons can
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make as many as five full circuits of the accelerator this way.

Since the beam is continuous, there can be electrons at five discrete energies

simultaneously in each linac because of the recirculation process. Exiting each linac,

these beams of different energy are separated by a spreader, a series of magnets,

which separate the different energy beams vertically into different beamlines. This

is necessary because beams of different energy require different magnets to bend

through the same arc. At the end of the arc, but preceding the next linac segment, a

recombiner merges the beams vertically for the next acceleration. Each recirculation

arc is composed of a group of magnets which steer and focus the beam it contains,

along with beam diagnostics.

The electron bunches, which are at an energy corresponding to between one

(845 MeV) and five (4.045 GeV) passes, can be extracted from the accelerator and

directed to the experimental areas by RF separators (time–domain beam deflectors)

just downstream of the spreader following the south linac. These devices, operating

at the third subharmonic of the accelerator RF frequency, can extract every third

bunch of electrons, so a beam of the desired energy is diverted to an experimental

area while the remaining bunches in the beam continue to the next recirculation arc

for further acceleration. The extracted beams are directed through a beam switchyard

and transport arcs by additional magnets to the appropriate experimental area.

In an ideal situation, a beam with point–like width follows the reference orbit of

an accelerator, central to magnets and acceleration fields with ideal symmetry. For

CEBAF, the ideal beam only interacts with the longitudinal electric fields of the

acceleration cavities and the transverse magnetic fields of dipole bending magnets.

Here, the electron spin direction remains constant in the longitudinal acceleration

fields, and the magnetic fields precess the electron spin relative to the momentum

of the beam. As one might expect, however, the trajectories of the electrons in an

accelerator can be complicated and imperfections of the electric and magnetic fields

exist. The finite size of the beam and non–ideal particle motion therefore cause the

precession of the electron spin to be different than nominally expected.
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Such a case for non–ideal particle motion was observed [Li93] in the single–pass

transport arc of the Stanford Linear Collider (SLC). It was characterized at first as a

very strong sensitivity of the beam polarization orientation at the SLC target location

to the position of the electron beam entering a 1200 m transport arc. Studies there

indicated that vertical orbit oscillations induced by a beam position offset of 0.5 mm

resulted in the polarization of the beam rotating, ending completely transverse to

the desired orientation at the target. This effect was characterized by a relation be-

tween the beam polarization precession frequency and the oscillation frequency of the

component of the beam orbit which is perpendicular to the plane of precession. The

strength of this sensitivity in their single–pass magnetic lattice was surprising, and

had not been previously studied. A methodology to correct for the undesired polar-

ization rotation had to be devised, using a complex orbit–dependent spin correction

technique.

To investigate this effect at CEBAF, Chapter 2 introduces the basic tools for

studying the spin motion of particle beams in electromagnetic fields, and then presents

the nominal spin transport of the accelerator. The depolarization phenomena due to

the finite beam size is also considered. Electromagnetic fields in the accelerator vary

little over the scale of the beam profile, and the effect of the beam size for full recircu-

lation of the accelerator is estimated to be small (< 10−4). To measure depolarization

in a linear accelerator the beam polarization is measured at separate locations by in-

depedent polarimeters. Therefore, systematic uncertainty in the absolute knowledge

of the beam polarization at each polarimeter determine the total uncertainity in mea-

suring beam depolarization. Within the systematic uncertainties of a few percent in

the polarimeters at the injector and experimental halls a small loss in polarization

(< 5%) is not measurable.

A study of the sensitivity of the beam polarization to the beam orbit of the

accelerator is presented. Simulations of spin motion in the recirculation arcs predict

the same sensitivity observed at the SLC exists at CEBAF and is due to the action of

quadrupole magnetic fields on the beam polarization. The effect is a small rotation
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of the average direction of the beam polarization (≤ 0.05◦) at each quadrupole. The

size of the rotation depends upon the beam energy, the strength of the quadrupole

magnetic field, and the beam location in the quadrupole. Generally, the effect of the

quadrupoles on the beam polarization averages to zero, even if individual rotations are

relatively large. However, a coherence condition can exist between the spin precession

frequency and the oscillation frequency of the beam orbit that results in the small

spin rotations adding. Although the net effect is still rather small, simulations show

the effect exists and is of the order of a few degrees.

1.3 Experiment and Results

Chapter 3 describes our experiment to measure the effect of the beam orbit in a re-

circulation arc on the beam polarization. The choice of the arc was determined by

simulation results. The strongest effect (which depends on beam energy) was found

to be in arc 7 (2.845 GeV) for the nominal accelerator energy . The experiment pro-

vides a method to verify the interaction of the beam polarization with the accelerator

transport. Further, because all 9 recirculation arcs were designed with similar trans-

port optics, this measurement can be used as a model description for the remainder

of the machine.

A polarized electron gun, based on photoemission from a semiconductor, produced

a longitudinal polarized electron beam (≈ 70%). The longitudinal polarization could

be reversed by reversing the optical polarization of the laser beam used to cause the

photoemission. The electron beam polarization at the injector could be oriented by

a series of spin rotators, and measured by a Mott polarimeter before being injected

into the main accelerator. The injector spin rotators provided beam polarization

orientations transverse to the bending plane of the accelerator. The uncertainty in

the setting of each spin rotator was characterized to better than 2◦. Perturbations to

the nominal beam orbit were introduced locally in recirculation arc 7 by a series of

deflecting magnets, while maintaining the beam position stable to ≤ 200 µm in the
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remainder of the accelerator. This was required to systematically measure the small

polarization effect. A Møller polarimeter and beam diagnostics measured the final

beam parameters at the exit of the accelerator.

Chapter 4 describes the conditions and results for the experiment. A small po-

larization sensitivity to the beam orbit in recirculation arc 7 was successfully mea-

sured. The beam energy was determined from measurements of the total spin rotation

through the accelerator. This measurement is consistent (at the level of 0.1%) with

beam momentum and elastic electron–proton scattering measurements of the final

beam energy in the experimental halls. The operation of the injector spin manipula-

tion system, as measured by the Mott polarimeter, agreed to better than ±5◦ with

measurements made at the Møller polarimeter.

The strength of the sensitivity of the beam polarization on the quadrupole fields

in arc 7 is consistent with the prediction for linear scaling with beam orbit amplitude.

However, simulations of the measurements performed, as described by an accelerator

model and calculated with a spin tracking program, underestimate the measured

effect. The dependence of the sensitivity on the orientation of the beam polarization

has the predicted azimuthal dependence about the momentum direction.

Finally, in Chapter 5, conclusions from this experiment and a discussion of the

implications of the results for this and other accelerators is made.

9



Chapter 2

Theory and Simulation

The formalism for describing the spin motion of an electron moving in electromagnetic

fields and a description of the ensemble of electron spins which constitute a polarized

beam are discussed in Section 2.1. The CEBAF accelerator is described in terms of a

spin transport model. The spin transport results for the nominal accelerator design

are given in Section 2.2. Finally, simulations describing depolarization phenomena

and the predicted polarization sensitivity to the beam orbit are given in Section 2.3.

2.1 Electron Spin and Beam Polarization

The formalism of the interaction of the spin of a relativistic electron with an electro-

magnetic field is described in Section 2.1.1. In Section 2.1.2 the ensemble of electrons

forming a polarized beam is discussed.

2.1.1 Interaction of EM Fields with Electron Spin

In 1959, Bargmann, Michel, and Telegdi used a set of relativistically covariant classical

equations of motion to solve the spin motion of a relativistic particle interacting with

electromagnetic (EM) fields [Ba59, Ja75]. The spin motion of a single electron in

an accelerator (or other electromagnetic system) is a consequence of the interaction

of its magnetic moment with the EM fields it encounters along its trajectory. This
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interaction causes the spin vector, �s, to undergo rotations described by

d�s

dt
= �s × �Ω, (2.1)

where

�Ω =
e

m

(
g

2
− 1 +

1

γ

)
�B −

(
g

2
− 1

)
γ

γ + 1

(
�β · �B

)
�β −

(
g

2
− γ

γ + 1

)
�β ×

�E

c

 . (2.2)

Here e and m are the electron charge and mass. The gyromagnetic factor g is given

by Equation 1.2. In this equation the spin direction is evaluated in the rest frame

of the electron, while all other quantities are expressed in the laboratory frame. Ω

is the angular velocity of the spin precession, �E and �B are the electric and magnetic

fields encountered along the particle trajectory, �v is the velocity, �β = �v/c, and γ is

the Lorentz factor 1/
√

1 − β2.

The coordinate system used throughout this thesis and for all of the beam sim-

ulation programs described is the standard transport [Br77] notation. The polar

angles θ and φ describe the orientation of the beam polarization vector, �P , relative

to the beam direction, as shown in Figure 2.1. In this coordinate system the ẑ unit

vector always points in the beam direction.

By applying Equation 2.2 to time–independent electric and magnetic fields the

precession of the electron spin along a specific trajectory is easy to construct. Some

examples for elements found in an accelerator are given here. Most common is the

case of the transverse magnetic field ( �B = Byŷ) as seen by the electron in a dipole

magnet. In this case, the angular precession frequency reduces to

�Ω =
eBy

mγ


−a(γ − 1)x′y′

(1 + aγ) − a(γ − 1)y′2

−a(γ − 1)y′

 , (2.3)

where a = g−2
2

, and x′ and y′ are the ratios of the transverse to longitudinal particle

momenta, x′ = px

pz
and y′ = py

pz
. To determine the precession angle of the electron

spin (relative to the beam momentum), �η, the change in the beam direction along the
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Figure 2.1: The coordinate system used for describing the beam, and the polar angles
(θ, φ) that describe the orientation of the polarization vector, �P , relative to the beam
direction.

trajectory must be accounted for by

�η = �Ω
l

v
− �θb. (2.4)

Here l and v are the path length and velocity along the trajectory of the particle, and

their quotient determines the interval of time the electron spin is precessing. θb is

the angle through which a reference orbit (x = x′ = y = y′ = 0) particle is deflected

and is given by el0By

p0
, where l0 and p0 are the reference orbit path length and electron

momentum, respectively. Combining these yields

�η =
elBy

mγv


−a(γ − 1)x′y′

(1 + aγ) − a(γ − 1)y′2

−a(γ − 1)y′

 − el0By

p0


0

1

0

 . (2.5)

A useful result (and one often used in this thesis) is for the case of the reference orbit.
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Here, Equation 2.5 reduces to

�η =


0

aγθb

0

 , (2.6)

which states that the spin of an electron deflected by a magnetic dipole field through

an angle θb will precess by an amount ηy = aγθb about the dipole field. The sense of

rotation is given by the right–hand rule. Thus, since a > 0, the electron spin always

rotates more than the electron momentum in a deflecting magnetic field.

Another example is the precession of an electron spin in a solenoid magnet where

the magnetic field is longitudinal ( �B = Bz ẑ). In this case Equation 2.4 becomes

�η =
elBz

mγv


−a(γ − 1)x′

−a(γ − 1)y′

1 + a

 . (2.7)

Because of the azimuthal symmetry of the solenoid we find the expected result that

ηx = ηy. More importantly, we find that for the reference orbit (and most beams of

interest) that the precession of the electron spin is given by

�η =


0

0

geBzl
2mvγ

 , (2.8)

where Bzl is the integral of the solenoid axial field,
∫

Bzdl.

Finally, the case for a transverse electric field ( �E = Exx̂) is given,

�η =
elEx

mγv


0

(a + 1
γ+1

)γv
c2

(a + 1
γ+1

)γv
c2

y′

 . (2.9)

which describes spin precession in a type of spin rotator called a Wien filter, discussed

later. Again, considering the reference orbit, the precession angle reduces to a rotation

about the ŷ axis. This is sensible because the transverse electric field in the laboratory
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reference frame becomes, in the rest frame of the electron by the appropriate Lorentz

transformation, a transverse electric field and transverse magnetic field about which

the electron spin precesses,

�η =


0

el0Ex

p0

(
g
2γ

− aγ
)

0

 . (2.10)

For example, a spin manipulation system [En93] previously operated at CEBAF re-

quired electrostatic deflectors to precess the electron beam polarization by 90◦ which,

for a 100 keV beam, required the bending angle to be 107.7◦.

2.1.2 Description of a Polarized Beam

The motion of charged particles in an accelerator is determined by solving the dy-

namical equations of motion for particles in the presence of electromagnetic fields.

Each particle is identified by two 3–dimensional variables; position and momentum

(�r, �p). Thus, an ensemble of particles occupies a 6–dimensional phase volume. If the

forces acting on the particles are conservative a theorem of Liouville states that the

total 6–dimensional volume containing the particles is conserved.

The concept of a particle beam, as in an accelerator, has the condition that the

momentum of the particles in a common direction (defined by the motion of a ref-

erence particle in an accelerator), usually pz, is much greater than the momentum

components transverse to this direction, px or py. It is often useful to project the

transverse components of the 6-dimensional volume into each of two 2-dimensional

transverse phase space areas defined by (x, x′) and (y, y′), where x′ = px

pz
and y′ = py

pz
.

Two simplifying assumptions of this concept of a beam are implied. The first is

that the longitudinal and transverse motions are uncoupled by the nature of acceler-

ation in the longitudinal direction. The second is that the transverse motions, x and

y, are uncoupled, providing for independent solutions to the orthogonal motion. The

longitudinal motion gives the central trajectory. The transverse motions are described
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with respect to the central trajectory. Consequently, each of the two transverse phase

space areas are useful quantities for characterizing the beam in an accelerator. The

area of the transverse phase space (x, x′) is the unnormalized emittance and is defined

by

εx =
1

π

∫ ∫
dxdx′, (2.11)

and similarly for εy. Another useful quantity describing the emittance of a beam of

particles undergoing acceleration is the normalized emittance given by

εn = βγε, (2.12)

which describes how the phase space containing the particles scales with the central

energy of the distribution. The utility of a normalized emittance is a consequence that

during acceleration, the momenta of the particles in the direction of the acceleration,

pz, increases while the transverse momentum, px and py, do not change. Consequently,

x′ and y′ decrease, εx and εy decrease, yet the total number of particles in the beam

is still conserved. The εn, alternatively, are constant during longitudinal acceleration

characterized by changing β and γ.

To discuss a beam of particles with spin we describe the beam polarization. The

spin of a single particle can be described by the eigenvalue equations

S2χ = h̄2s(s + 1)χ

Szχ = msχ, (2.13)

where s = 1
2

for an electron spin and χ =
(

a1

a2

)
is thus a two component (spinor)

wave function. These equations may also be written in terms of the Pauli matrices �σ

defined by �Sχ = h̄
2
�σ. An explicit representation of these matrices is

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 . (2.14)

The wave function is normalized to unity by the condition

〈χ|χ〉 =

(
(a∗

1, a
∗
2),

(
a1

a2

))
= 1. (2.15)
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The spinor wave function can also be described by the real–space polar coordinates

(θ, φ) on the unit sphere. This relation is made by projecting, by use of the Pauli

matrices, the spinor wave function onto the unit vector ê = (sin θ cosφ, sin θ sin φ,

cos θ), through

(�σ · ê)χ = λχ. (2.16)

Consequently, the wave function can be written

χ = +
h̄

2

(
cos θ

2

sin θ
2
eiφ

)
− h̄

2

(
sin θ

2

− cos θ
2
eiφ

)
, (2.17)

and the expectation value of this wave function (describing a single spin direction) is

�P = 〈χ|�σ|χ〉. (2.18)

As expected,

Px = sin θ cosφ,

Py = sin θ sin φ,

Pz = cos θ. (2.19)

Note the magnitude of the polarization, P =
√

P 2
x + P 2

y + P 2
z = 1.

A realistic beam, however, is not perfectly polarized, but rather is a statistical

mixture of the spin states of the constituent particles. The expectation value of the

beam polarization is computed as the weighted average of the polarization, Pn, of the

n constituent pure spin states, χn, forming the particle beam

�P =
∑
n

wnPn =
∑
n

wn〈χn|�σ|χn 〉. (2.20)

The factor wn is the contribution of the nth pure spin state to the system and is

computed by

wn =
Nn∑
n Nn

, (2.21)

where Nn is the number of electrons in state χn. Exactly as before, the expectation

value of the spinor wave functions with the Pauli matrices yields the polarization of
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the beam of particles. The only difference is that the expectation value is now the

weighted sum of n wave functions. The density matrix operator, ρ, is defined to be

ρ =
∑
n

wn|χn〉〈χn|. (2.22)

The polarization is calculated as P = tr(ρσ), or explicitly,

tr(ρσx) = tr

∑
n

wn

 a1,na
∗
2,n |a1,n|2

|a2,n|2 a∗
1,na2,n


 = Px,

tr(ρσy) = Py,

tr(ρσz) = Pz. (2.23)

The density matrix can then be written compactly,

ρ =
1

2

 1 + Pz Px − iPy

Px + iPy 1 − Pz

 =
1

2
(1 + P · �σ). (2.24)

As an example, consider measuring the polarization of a beam of particles whose spin

states are along the beam momentum direction, pz. Using the convention ↑ = + h̄
2

and ↓ = − h̄
2
, the probability of measuring spin states with value + h̄

2
is 1

2
(1 + P ) and

physically corresponds to counting the total number of spin states in the direction ẑ,

N↑, over the total N↑ + N↓. Likewise, the probability of measuring the N↓ electron

spin states with value − h̄
2

corresponds to a probability 1
2
(1 − P ), therefore,

N↑
N↑ + N↓

=
1

2
(1 + P ),

N↓
N↑ + N↓

=
1

2
(1 − P ). (2.25)

Combining these yields the polarization as is physically observed in experimental

systems used to measure the beam polarization,

P =
N↑ − N↓

N↑ + N↓
. (2.26)

This result will be used to describe the extraction of the beam polarization from both

Mott and Møller polarimetry used for this thesis.
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2.2 Calculations for Spin Transport and CEBAF

This section includes the method and calculations for the polarization phenomena

expected for the nominal beam transported at the Continuous Electron Beam Accel-

erator Facility (CEBAF). This includes a description of the accelerator necessary for

calculating spin transport quantities in Section 2.2.1, and the method underlying the

injector spin manipulation system and basic spin rotation results in Section 2.2.2. An

estimate of the effect of the linacs on the spin transport is given in Section 2.2.3.

2.2.1 Spin Model for CEBAF

To calculate the motion of the beam polarization through the CEBAF accelerator a

number of factors need to be considered. Refer to Section 1.2 for details and a layout of

the accelerator. The dominant factors are the beam energy and beam bending angle,

which determine how the spin precesses in each arc. The spin dynamics of a zero

emittance beam, which are identical to those of a single electron, can be calculated

easily to leading order by making three approximations: (a) the linacs do not rotate

the spin; (b) the dipole fields of the arcs and transport channel precess the spin; and

(c) the spreaders and recombiners do not give any net precession. With this model

of CEBAF, the effective spin transport becomes a series of drift sections and 180◦

bending sections. The precession angle of the spin, θspin, for a relativistic electron in

the bend plane of the dipole field is again, simply related to the bending angle, θbend,

by

θspin =
g − 2

2
γθbend. (2.27)

The leading contribution to the precession is the guiding dipole fields in the acceler-

ator. Large dipole fields are located in the spreader, recirculator, recombiner, beam

switchyard, and experimental hall magnet systems referred to in Figure 1.1.

The spreader and recombiner systems are symmetrical in that each serves to bend

the beam orbit from one momentum direction to another which is parallel, but trans-

lated from the first, as shown in Figure 2.2. For example, the polarization at location
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DIPOLE 2
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θbend

(B) θspin

Figure 2.2: A magnetic chicane used to translate the beam to a parallel axis preserves
the beam polarization orientation. This type of magnetic system is found in the
spreader and recombiner sections of the CEBAF accelerator.

A is longitudinal to the beam momentum. When the beam momentum direction is

changed by an amount θbend by Dipole–1 the spin is precessed an amount θspin, and

is no longer parallel with the beam momentum direction at location B. However,

when the beam momentum direction is again changed by Dipole–2 an amount −θbend

the polarization rotates back, and at location C has its original orientation. Conse-

quently, the net bend angle is zero and the beam polarization orientation, although

rotated by each dipole magnet, is ultimately returned and preserved to the initial

orientation.

The recirculator and beam switchyard magnets, however, are not compensated in

this way and contribute to a net precession of the polarization. The net precession in

each arc depends on the beam energy through the factor γ. All recirculation arcs have

the same bending angle θbend = π. A useful quantity for describing the precession of

the polarization is the spin tune, νs, defined to be

νs =
θspin

2π
, (2.28)

the number of revolutions the spin precesses relative to the beam momentum. The

nominal beam energy and spin tune for each arc is given in Table 2.1.

The polarization precesses in the transport arcs which are used to deliver the beam

from the accelerator to each of three experimental halls. The bend angles to reach

the Hall A and Hall C experimental areas are nominally equal and opposite to one
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Recirculation Arc 1 2 3 4 5 6 7 8 9

Beam Energy (MeV) 445 845 1245 1645 2045 2445 2845 3245 3645

Spin Tune (νs) .505 .959 1.41 1.87 2.32 2.77 3.23 3.68 4.14

Table 2.1: Spin tune, νs, for the nine recirculation arcs of CEBAF for the design
energy (Einjector = 45 MeV and Elinac = 400 MeV).

another at the elevation of the accelerator beamline. The Hall B experimental hall is

at an elevation above the accelerator beamline. As with the spreader and recombiner

geometries, the Hall B beamline is parallel to the prior beamline, and consequently,

the net rotation of the beam polarization between the accelerator and Hall B is zero.

The bend angles to each transport arc and the corresponding spin tune per GeV (ν′
s),

depending upon the number of recirculations, are listed in Table 2.2.

Experimental Area Hall A Hall B Hall C

Transport Arc Bend Angle (θbend) +37.50 ◦ +0 ◦ −37.52 ◦

ν′
s [GeV−1] +0.2363 0 −0.2364

Table 2.2: The spin tune per GeV (ν′
s) in the transport arcs between the accelerator

and each of the three experimental areas. ν′
s is used because the beam energy depends

upon the number of recirculations prior to extraction.

2.2.2 Spin Manipulation Approach

Photoemission polarized electron sources produce beams with longitudinal polariza-

tion. In the transport from the injector to the experimental hall the electron spin

precesses relative to the beam momentum. For example, referring to Table 2.1, the

total precession of a beam accelerated to 4 GeV is more than 20 revolutions. Many

experiments proposed at Jefferson Laboratory require a stable high polarization beam

of electrons with the polarization oriented along the beam momentum at the scatter-

20



ing target. To meet this need a spin rotator is located in the injector to orient the

polarization to be longitudinal at the experimental target.

A spin rotator is a sequence of magnets or electrostatic components which provide

for the control of the spin orientation of a beam while leaving the outgoing orbit

unaffected. Accelerators of various design employ different spin rotators to either

preserve or orient the beam polarization. For example, in polarized beam storage

rings, spin rotators termed snakes are employed to reverse the orientation of the beam

polarization upon each revolution for the purpose of removing polarization errors

which could otherwise coherently add to depolarize the beam. In a linear transport

system such as CEBAF or the SLC a snake is unnecessary. In these accelerator

designs the spin rotator is used to rotate the beam polarization orientation such that

it satisfies a condition somewhere in the accelerator, typically that it be longitudinal

at the target location of an experiment.

The spin transport model of the accelerator indicates that the net precession at

CEBAF remains in the horizontal plane. However, if the accelerator has imperfections

(as all do) it is sensible to have a device which can rotate the polarization by some

amount out of the accelerator bend plane. Indeed, this experiment requires several

such polarization orientations (including transverse to the bend plane).

It is worthwhile to explore a few levels of sophistication that can be employed to

preserve longitudinal polarization at the experimental halls, leading to the approach

used at CEBAF.

Without a spin manipulation system the final polarization orientation at the ex-

perimental halls can still be chosen by judiciously setting the linac and injector energy

gains, Elinac and Einjector, respectively. The beam energy is then determined in each

of the recirculation and transport arcs. The net precession for a given beam delivery

configuration (number of recirculations and choice of experimental hall) determine

the total precession between the electron gun and the experimental target. For p

passes of the accelerator and a final bend θ̂hall to the experimental hall (in units of
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π), the net accelerator precession is given by

ψTotal =
aπElinac

mec2

(
2p2 − p(1 − 2α − 2θ̂hall) − α(1 − θ̂hall)

)
. (2.29)

Here, α = 0.1125, a fixed scaling factor between the injector and linac energy gain.

The derivation of Equation 2.29 is given in Appendix A. The requirement for lon-

gitudinal polarization at the experimental area sets the condition that ψTotal = lπ,

where l is an integer. Finally, the allowable linac energies are given by

Elinac =
lmec

2

a
(
2p2 − p(1 − 2α − 2θ̂hall) − α(1 − θ̂hall)

) . (2.30)

The restriction of this method is that only specific final beam energies are allowed.

A more useful approach is to employ a spin rotator somewhere in the accelerator.

The spin rotator can in principle be located anywhere in the accelerator. However,

if the spin transport is well understood it is more practical to locate the rotator at a

position where the beam energy is smallest. For example, a solenoid field integral of

0.0175 kG m is required to precess an 100 keV (electron gun energy) beam polarization

by 90 ◦, however, to do this at the maximum design energy of 4 GeV the required field

is (γβ)4GeV

(γβ)100keV
larger, or 209.2 kG m.

The approach at CEBAF is to locate two types of rotators in the 100 keV section

of the injector shortly following the polarized electron gun. The first type of spin

rotator, called a Wien filter, is discussed in Section 3.2.1. It produces a rotation of

the spin direction in the Wien filter electric field plane (ηy). The second type of spin

rotator is a solenoid magnet, discussed in Section 3.2.2, which produces a rotation

about the longitudinal magnetic axis (ηz). To produce the required rotations for this

experiment one Wien filter and two solenoid magnets are used in series.

The product of the rotations of the three spin manipulators transforms the po-

larization vector at the electron gun, �PGun, to a polarization vector exiting the spin

manipulation system, �PSM , like

�PSM = Rz(φSolenoid2) · Rz(φSolenoid1) · Ry(θWien) · �PGun, (2.31)
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where Rx(θ), Ry(θ), and Rz(θ) are the usual rotation matrices (defined in Appendix B).

Because the rotations in the two solenoid magnets are about the same axis, and are

in series, they commute, where φS12 = φSolenoid1 + φSolenoid2, giving

�PSM = Rz(φS12) · Ry(θWien) · �PGun. (2.32)

The condition for setting the rotation angles of the spin manipulator involve choosing

(θWien, φS12) such that a final polarization, �Pfinal, is reached in an experimental hall.

The final polarization is determined by the spin precession following the spin manip-

ulators, but prior to the final location. All of the intervening spin rotations (about 3

possible axes) are due to the precession of the beam polarization in the accelerator.

The final polarization can be written as the product of N rotations

�Pfinal =
N∏

j=1

((Ri)j(θj)) · �PSM , (2.33)

where the jth rotation is due to a precession θj about the ith axis. If the simple spin

transport model for the accelerator is correct then this product of rotations due to

the recirculation and transport arcs are all about the same ŷ axis. In this case, all of

the rotations commute and add simply giving

�Pfinal = Ry(Θ) · �PSM , (2.34)

where Θ =
∑N

j=1 θj is the net bending angle through which the beam momentum is

deflected in the accelerator.

The most trivial solution is for the case where the final polarization is to be

longitudinal at the experimental hall (�Pfinal = ±P0ẑ). The solution then shows

that φS12 = 0 (polarization is preserved to the bend plane of the accelerator) and

θWien = −Θ (modulo 2π). A detailed derivation and the more general result of

Equation 2.33 is given in Appendix C.

The most flexible approach is achieved by combining the above two methods. A

linac energy is chosen such that the difference in net precession to any two experimen-

tal halls is a multiple of π. In this way, the reference spin direction can be adjusted
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at the injector (one location) and the resultant beam polarization can be longitudinal

in two or three end stations simultaneously. Calculation of linac energies using this

method have been made by Sinclair [Si96] for two hall simultaneous operation.

Although this approach is preferable, it does not always satisfy the requirements

for an experiment. It is often the case that the simultaneous experimental programs

in the three halls cannot find a common linac energy (experimental schedule or unan-

ticipated hardware failure) to provide exact multiples of π spin precession. In this

situation, a compromise in the longitudinal polarization and beam current required

for an experiment are helpful to optimize the efficient setup of the accelerator.

To describe the quality of a polarized beam for an experiment, a figure of merit

relating the beam current and polarization is useful. The figure of merit is made

by the basic relationship between a spin–dependent process, S, that can produce a

measurable asymmetry, ε, from a preferentially polarized beam of polarization P ,

ε = S · P. (2.35)

The statistical uncertainty in the measurement of the spin–dependent process, ∆S,

is proportional to ∆ε/P , where ∆ε ∼ 1/
√

N . N is the number of events measured to

determine the asymmetry, which is proportional to the beam current I. Combining

these yields the figure of merit, IP 2. Obviously, there are only two orientations

where the polarization is either parallel or anti–parallel to the beam momentum at

the experimental hall. Consider the case where the polarization orientation is within

some tolerance of being longitudinal, rather than being exactly longitudinal at the

experimental area. For this case, assume the figure of merit can be reduced by at

most 10% because another experimental hall requires some amount of the same beam

current and polarization. This corresponds to reducing the longitudinal component

of the beam polarization to ≤ 95% of its maximum value; or orienting the same

polarization at an angle within θ = cos−1(0.95) = ±18◦ of being longitudinal.
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2.2.3 Estimate of Linac Effects

The estimate for the effect of the linac on the polarization of the electron beam

is made by considering separately the magnetic and electric fields as seen by the

beam. Quadrupoles, to focus and maintain the beam in the linac, and correction

dipoles, to steer the beam along the reference orbit, are used in the linacs; there are

no net bend dipoles and consequently the precession of the reference orbit electron

due to magnetic fields is zero. The RF cavities produce the accelerating gradient,

�E, which near the axis of the linac is longitudinal, or nearly parallel to the beam

motion, �β. In this case �β ‖ �E and the only term in the BMT equation containing

the electric field, proportional to �β × �E, is zero. The extent to which the electron

spin experiences transverse electric fields away from the cavity axis is small for two

reasons. First, the coefficient of the term proportional to the electric field, (g
2
− γ

γ+1
),

is the difference between two nearly equal values, which for beam energies between

400 MeV and 4 GeV is in the range of (2.5 to 1.3) ×10−3. Second, the geometry of

the acceleration cavity RF couplers introduce transverse electric fields of alternating

sign to the passing beam, thus tending to cancel.

2.3 Simulation of Spin Transport at CEBAF

This section describes results for the simulation of spin transport, and specifically for

the sensitivity of the beam polarization to the beam orbit. Concepts and definitions

used to describe beam motion are given in Section 2.3.1. The spin simulation program

used for spin motion analysis is described in Section 2.3.2. Results of simulations

for finite beam size depolarization phenomena are given in Section 2.3.3, and the

sensitivity of the beam polarization to the beam orbit is discussed in Section 2.3.4.

Finally, a description and simulation results for the proposed experiment is given in

Section 2.3.5.
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2.3.1 Betatron Motion

The need for focusing charged particles in an accelerator is a fundamental part of its

design. Without some type of focusing particles with even a small initial transverse

momentum would eventually reach the walls of the accelerator chamber or beampipe

and be lost. To overcome this problem accelerators are designed with magnetic ele-

ments which provide a restoring force to stabilize the divergent motion. For example,

in the low energy (≤ 500 keV) section of the CEBAF injector beamline solenoid mag-

nets are used for their focusing properties, similar to an optical lens. In the remainder

of the CEBAF accelerator, sequences of focusing (and defocusing) quadrupole mag-

nets accomplish the same goal. The general equation of motion for particles in these

restoring force magnetic fields is that of a simple harmonic oscillator,

u′′(s) + ω2u(s) = 0, (2.36)

where u represents either x or y transverse displacement along a reference orbit in the

direction s. The particle moving through the accelerator performs oscillations about

the reference orbit with some amplitude, û, and a frequency ω. Because this type of

motion was discovered in connection with particle motion in the Betatron developed

by Kerst and Serber [Ke41], the motion is referred to as a betatron oscillation. Stable

solutions of Equation 2.36 are sinusoidal and trajectories are often classified as sine–

like or cosine–like for this reason, as depicted in Figure 2.3. Consequently, the general

solution can be made as a superposition of sine and cosine –like orbits.

This is, of course, an oversimplification. In reality, the magnetic focusing scheme

is a series of distributed elements. Between each element is a drift space, where the

beam continues undeflected (we neglect the Earth’s magnetic field). Rather than

the classical oscillation described above the real beam receives a series of localized

deflections from quadrupole magnets. Formally, the amplitude and phase advance

of the betatron oscillation is determined by the distribution of focusing elements

referred to as the magnetic lattice. Consider two examples which are of consequence.

Imagine an actual beam were to follow the ideal reference orbit of an accelerator. The
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cosine-like ray

sine-like ray

beamline, s

u

s=0

u (0) = 0
u’(0) = x’ or y’

u (0) = x or y
u’(0) = 0

Figure 2.3: Trajectories are described by sine–like and cosine–like rays according to
the conditions which describe the amplitude and angle of the particle motion.

finite transverse size of the beam results in particles at the edge of the beam profile

undergoing betatron oscillations (with amplitudes comparable to the beam size) about

the reference orbit. Extending this concept, if the beam itself were displaced from

the reference orbit, or moving at an angle to the reference orbit, the entire beam

would execute a betatron oscillation. The oscillation would be about the reference

orbit, with some characteristic frequency dependent upon the magnetic focusing. The

particle motion within the beam profile, described above, would be superposed with

the betatron motion of the entire beam. A useful expression characterizing the number

of oscillations a particle or beam makes in traversing a region of an accelerator is the

betatron tune, denoted by νx (horizontal motion) or νy (vertical motion).

2.3.2 MURTLE SPIN22 Spin Tracking Code

The single particle spin tracking program murtle spin22 [Fi95], written at the Stan-

ford Linear Accelerator Center to understand the spin transport of the Stanford Linear

Collider, was used to simulate spin transport at CEBAF. The program, written in
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standard Fortran, numerically integrates the equations of motion to second order to

calculate the trajectory through an accelerator model. The accelerator model is a

sequential list of the elements along the beamline as defined in the input standard

of transport [Br77], a first– and second– order matrix multiplication computer

program intended for the design of magnetic beam transport systems. A typical sim-

ulation takes as input the accelerator model (description of beamline), and the initial

position (x, y), initial angles (x′, y′), spin orientation (�s0 = sx, sy, sz), and energy (E)

of a single electron. The simulation output includes a list of the particle position and

spin orientation along the length of the beamline. Also included is a spin transport

matrix (STM) which maps an initial spin vector, �sinitial, to the final point of the

beamline, 
sx

sy

sz


final

=


Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz




sx

sy

sz


initial

. (2.37)

The accelerator model used for the spin tracking simulations is based on the

design model for the CEBAF accelerator. The design model is defined in terms of

the standard input for dimad [Br85], a second–order particle tracking program which

has been well–tested and is used in the design of circular accelerators and beamlines.

To perform spin transport studies the design model of the recirculation arcs of the

accelerator was converted from the dimad input standard to the transport input

standard. The conversion between standards was checked for equality before any of

the spin simulations were performed. Minor modifications were made to the original

spin tracking program to streamline the output and allow for scaling recirculation arc

models to arbitrary energies. However, the simulation program is otherwise entirely

based on murtle spin22.

One limitation of the spin tracking program is that the particle energy cannot

be incremented in the accelerator model to include linac energy gains. Rather, to

compute the spin tracking for elements separated by a linac requires simulating the

region before and after the linac and then combining the results in a meaningful way.
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This is done by successively multiplying the spin transport matrices and assuming

the spin transport matrix for each linac is 1.

Another limitation is that only single particle tracking is performed. To simulate

spin effects related to the finite size of the beam many simulations of single particle

tracking were performed with initial conditions that sampled the beam profile. The

typical time required to compute the spin transport matrix for a recirculation arc on

a moderately busy Hewlett-Packard 9000 workstation is 60 seconds.

2.3.3 Depolarization in Recirculation Arcs

Spin tracking simulations were performed for each recirculation arc to determine the

extent to which spin motion would differ for electrons which originated from differ-

ent locations in the beam profile. The differences in the spin motion are due to the

non-uniformity of the electromagnetic fields over the extent of the beam profile. The

average of these differences over the beam profile provides an estimate of the depo-

larization a beam of uniform spin orientation would incur traversing a recirculation

arc. The simulations were performed for electrons exiting a linac and entering a

spreader, and then tracked through elements until the end of the recombiner, before

entering the next linac. The initial position and momenta of the electrons were cho-

sen to sample the center and extrema of the accelerator unnormalized phase space

(εx,y = εn/βγ) for each recirculation arc as shown in Figure 2.4, using the CEBAF

normalized design emittance, εn = 3.916 × 10−6 m rad (4σ). For each trajectory a

different spin transport matrix is computed. For a set of trajectories the maximum

difference in the spin orientation between two electrons at the end of the arc, given

the same initial spin orientation at the entrance, was determined. The difference in

the final spin orientation between two trajectories is determined from the inclusive

angle between the final spin vectors, �s1 and �s2, given by

δ =
�s1 · �s2

|�s1||�s2|
. (2.38)
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X

X’

CENTRAL RAY

2-D PHASE VOLUME

PHASE SPACE EXTREMA

Figure 2.4: Diagram indicates locations in the transverse phase space used for sam-
pling initial trajectory conditions for simulating depolarization effects due to the finite
size of the electron beam.

The results, shown in Table 2.3, are twice the maximum inclusive angle as determined

from the simulation for each recirculation arc. The factor of two arises because the

simulation was performed for only half of the symmetrical phase space area. The

linearity of the fields over the small beam profile (∼ 100 µm) make this assumption

reasonable. The results indicate that the nominal depolarizing effect from the finite

beam emittance is modest, incoherently adding (an upper bound) to 0.72◦ for all 9

Arc 1 2 3 4 5 6 7 8 9

Beam Energy (MeV) 445 845 1245 1645 2045 2445 2845 3245 3645

δmax (deg) .016 .028 .022 .198 .036 .096 .256 .074 .150

Table 2.3: The maximum inclusive angle, δmax, for all nine recirculation arcs at the
nominal design energies.

recirculation arcs. This maximum angle is not a practical quantity to use. However,
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a depolarization, or difference from the nominal polarization is useful. Assuming

the EM fields vary linearly over the beam profile, the maximum difference angle

simply bounds a space linearly filled with spin components that vary between 1 and

cos(δmax). In the same way that
∫

cos2(θ)dθ over a period is 1
2
, the average of the

spin components relative to the central ray can be computed. Orienting the final

spin vector for the reference orbit along the ẑ direction, as a point of reference, the

components which differ by an angle δ have length cos(δ) along the ẑ direction. The

average over all of the spin directions in the phase space is then simply

sz =

∫
cos(δ)dδ∫

dδ
, (2.39)

and the result is

sz =
sin

(
δmax

2

)
(

δmax

2

) . (2.40)

The depolarization for the 9 recirculation arcs using δmax = 0.72◦ results in an average

depolarization of ∼ 10−3 % ! In fact, to produce a 1% beam depolarization requires

(deltamax = 28◦.

Presently, the systematic uncertainties in the beam polarimeters limit the relative

uncertainty in measuring the difference in polarization between the injector and ex-

perimental halls to ≤ 5%. Consequently, the level of depolarization estimated from

the effect of the finite beam size is not measurable. A future accelerator might have

5–10 larger beam energy and 20–50 larger normalized emittance. In this case, the

effects are larger and may be measurable.

2.3.4 Polarization Sensitivity

The largest spin transport effect at CEBAF is the precession of the beam polarization

about the bending magnetic dipole fields which guide the beam along the reference

orbit of the accelerator. Spin transport simulations for orbits undergoing betatron

oscillations about the reference orbit in the recirculation arcs show a striking con-

nection to the precession frequency of the electron. The effect originates because
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the quadrupole magnetic fields act on the beam polarization in a regular way. The

net effect is largest when the spin tune νs is close to the betatron tune in the plane

perpendicular to the plane of spin precession. For the case of the recirculation arcs

(horizontal spin precession) the relevant orbit is the betatron oscillation in the vertical

plane (νy). Actual accelerator operations include beam orbit errors and/or instabili-

ties of the magnetic fields that cause the betatron oscillations. To explain these points

a series of spin transport simulations of a vertical betatron oscillation in the CEBAF

recirculation arcs is presented.

A plot of a cosine-like (y = y0, y
′ = 0) vertical plane betatron oscillation is shown

in Figure 2.5. Here the electron is introduced with a vertical offset (y = 1 mm) at

Figure 2.5: Characteristic betatron motion in arc proper for a vertical orbit displace-
ment.

the end of the spreader of arc 9 with no horizontal or angular offset. The resulting

horizontal and vertical trajectories are plotted through the arc. Quadrupole magnets

are at the locations where the slope of the trajectory changes. The π bend for each of

the nine recirculation arcs is designed with nominally identical betatron tunes. Each
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has a horizontal betatron tune νx = 5 and a vertical betatron tune νy = 3. The latter

can be counted by tracing the number of periods in Figure 2.5. As a consequence of

the similar optics, equal initial conditions result in identical betatron motion for each

arc. The x and y motions are clearly uncoupled. The ratio of the amplitudes for the

vertical and horizontal trajectories is ≈ 4 mm
100 µm, or 40:1.

The spin transport simulation results of three recirculation arcs (1, 7, 9) is dis-

cussed for the vertical betatron oscillation described. The results are shown in Fig-

ure 2.6 through Figure 2.8. By studying these plots it becomes clear that when

νs ≈ νy the difference between the spin motion of the perturbed electron orbit and

the spin motion of the reference electron orbit increases. Characteristically, the effect

is a rotation of the spin vector about the x̂ axis (Rx(θ)).

Figure 2.6: Arc 1 spin tune (a); and differences (b) between the spin components of
a vertical betatron orbit and the reference orbit.
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The simulation results for arc 1 (E = 445 MeV) are shown in Figure 2.6. The

initial spin direction is �si = +ẑ. The upper plot of Figure 2.6 shows the sz component

of the spin motion for the reference orbit. The change in sz (direction cosine of the

spin angle) is due to precession caused by dipole magnetic fields along the beamline.

The region of the plot where the spin direction is constant indicate that the electron

spin is not interacting with a magnetic field. While traversing the arc, the spin

direction cosine changes from +1 to −1 indicating that as the particle momentum is

bent through π in the arc the spin rotates ≈2π to a new orientation.

The spin motion for the orbit shown in Figure 2.5 is then calculated. The lower

plot shows, component–by–component, the differences between the spin motion for

the perturbed and reference orbits, where

δsj = (sj)perturbation − (sj)reference, (2.41)

j ∈ (x, y, z). During the betatron oscillation for the perturbed orbit the electron spin

interacts with EM fields not seen on the reference orbit, such as the quadrupole fields

which are non–zero away from the quadrupole magnetic axis. These interactions add

additional spin rotations to the perturbed electron orbit, resulting in a difference in

the spin motion. Because the dipole magnetic fields are essentially constant over the

vertical motion, the sx and sz components are equally affected during the vertical

betatron oscillations. Note that both δsx and δsz are less than 2 × 10−5 in this

simulation.

In contrast, sy is sensitive to the horizontal component of the quadrupole magnetic

fields, which increase linearly as a particle moves vertically away from the reference

orbit. It is evident from the plot that the accumulated spin rotations which differ

from the reference orbit due to vertical excursions into the horizontal quadrupole

fields show larger, non–zero spin rotations. However, they tend to cancel and δsy

never becomes larger than 3 × 10−4. This results because the precession frequency

varies slowly compared with the frequency of the vertical orbit motion. In other

words, the quadrupole magnetic fields are effectively sampled by the electron spin as
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it slowly precesses in the bend plane. In this way, the additional spin rotations tend

to systematically cancel in the same way that, for example,

∫ 1

0
dx cos(2πνsx) cos (2πνyx) ≈ 0, (2.42)

when νs 
= νy. In arc 1 νs = 0.505 and νy = 3.0.

Simulation results for a similar study of arc 7 (E = 2845 MeV) are shown in

Figure 2.7. The upper plot shows sz along the reference orbit of arc 7. Again,

Figure 2.7: Arc 7 spin tune (a); and differences (b) between the spin components of
a vertical betatron orbit and the reference orbit.

�si = +ẑ. The precession rate is larger in arc 7 than arc 1 because γ is larger by

the ratio of the beam energies of the two arcs, E7

E1
≈ 6. The spin tune for arc 7 is

νs = 3.25. The betatron tune νy and the spin tune νs have nearly identical phase

along the arc.
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Again, the spin motion for the perturbed orbit is calculated. The lower plot in

the figure shows, component–by–component, the differences between the spin motion

for the perturbed and reference orbits. Again, δsx ≈ 0 and δsz ≈ 0 for both of the

trajectories because the vertical fields along each of the trajectories is nearly iden-

tical. However, sy does change significantly due to the horizontal component of the

quadrupole magnetic fields encountered by the electron spin over the vertical orbit

motion. These interactions coherently add to precess the spin in the same direction

along the length of the arc. This is because when the electron is at the top of a beta-

tron oscillation the horizontal component of the quadrupole fields add, for example,

a small negative vertical spin component. Then, later in the arc at the bottom of

the betatron oscillation, the particle interacts with a reversed horizontal quadrupole

magnetic field. Because the horizontal components of the spin have precessed by ≈ π

at this point, the spin has also reversed direction, and another small negative vertical

spin rotation is generated.

Finally, the simulations results for arc 9 (E = 3645 MeV) are shown in Figure 2.8.

These indicate that some coherence between the vertical betatron oscillation and the

spin tune still exists. The upper plot indicates that the spin orientation is now rotating

faster than the betatron oscillation, accumulating more periods than the precession

frequency over the length of the arc. Because of this, the phase difference between

the two oscillations increases along the length of the arc. The difference between the

spin orientation of the perturbed electron orbit and reference electron orbit, shown

in the lower plot, is again explained by considering the accumulated spin rotations

in the quadrupoles. The initial positive spin growth observed is due to the similarity

in the periodic structure of the betatron oscillation and the spin tune. However,

roughly half-way along the arc the mis-match in phase causes the spin rotations due

to excursions in the quadrupole fields to begin accumulating in the opposite direction,

leading to a peak in the vertical spin component followed by a reduction.

This investigation (and its interpretation) was checked by performing an element–

by–element analytical calculation which considered the vertical position, spin orienta-
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Figure 2.8: Arc 9 spin tune (a); and differences (b) between the spin components of
a vertical betatron orbit and the reference orbit.

tion, and quadrupole locations along arc 9. By summing the net spin rotations along

the arc a good fit to the lower plot shown in Figure 2.8 was obtained. The results

from the simulations indicate that the spin rotations are due to excursions into the

quadrupole fields.

These simulations predicted the sensitivity of the spin direction to vertical beta-

tron oscillations to be the strongest in arc 7. Further simulations were performed for

two trajectories which were injected at the entrance to arc 7 with the same initial

spin direction, but which followed different orbits. This was done to determine the

inclusive angle between the final spin directions of the two orbits as a function of

the initial spin direction at the beginning of arc 7. The calculated inclusive angle,

∆S, is plotted in Figure 2.9 as a function of the initial spin direction for the case
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where one orbit was introduced with a vertical displacement of 1 mm and the second

orbit was introduced with a vertical displacement of −1 mm. Two significant pieces

..

Figure 2.9: Inclusive angle, ∆S, between final spin vectors at the end of arc 7 of two
different orbits as a function of the initial spin direction at the beginning of arc 7.

of information are extracted from this plot. First, the largest relative spin angle dif-

ference, ∆S, is roughly 1.3◦. Second, there are specific initial spin orientations which

have identical final spin orientations (indicated by the zeros in the plot). Both of

these features are due to the beam polarization–quadrupole coupling introduced by

the orbit perturbations.

These features can be understood by writing the spin transport matrix (STM) for

both trajectories in terms of the sum of two matrices: (1) the reference orbit matrix;

and (2) the difference orbit matrix showing the additional precession contribution due

to the orbit perturbation. In this form, the precession effects due to orbits different

38



than the reference orbit becomes more obvious. The matrices are listed here;

STMref =


+0.13656 +0.00000 −0.99063

+0.00000 +1.00000 +0.00000

+0.99063 +0.00000 +0.13656

 (2.43)

STMy=+1mm = STMref + 10−2


+0.005 −0.821 +0.004

−0.683 −0.007 −0.923

−0.003 +0.803 −0.002


difference

(2.44)

STMy=−1mm = STMref + 10−2


+0.005 +0.821 +0.004

+0.683 −0.007 +0.923

−0.003 −0.803 −0.002


difference

(2.45)

First, note that in each difference matrix the elements which couple sy with sx and sy

with sz are approximately equal. These matrix elements describe the rotation of the

bend plane spin components (sx or sz) into the vertical direction (sy). This precession

is the result of the interaction between the bend plane spin components and the

horizontal quadrupole magnetic fields. It is important to consider that these matrices

are not for a single quadrupole magnet, but rather for a collective set of magnets

which can act on all three components of the beam polarization simultaneously. If

we studied a single quadrupole magnet then the expected coupling of sx with sy

would be zero . However, because the dipole bending magnets mix the sx and sz

components by rotating the beam polarization in the bend plane, the quadrupole

interaction becomes apparent in all the Sxy, Syx, Syz, and Szy matrix elements, which

are roughly two orders of magnitude larger than the other matrix elements. Note

the sign change of these matrix elements between the spin transport matrices of the

two trajectories. This sign changes are because the two trajectories are symmetric

to one another about the horizontal bend plane. The direction of the quadrupole

fields, however, is anti–symmetric about the horizontal bend plane (required for beam

focusing). Therefore, the spin orientation along the two trajectories show equal and

opposite spin rotations with respect to one another.
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Finally, we note that the remaining elements in both difference matrices are ap-

proximately equal. The value of these elements mainly causes the bend plane spin

components to rotate ∼ 0.001◦ more than the central orbit. Each of these matrix

elements have the same sign which indicates that the effect is not related to the

quadrupoles (which are anti–symmetric between perturbations). The value of these

matrix elements may be related to path length difference in the arc.

2.3.5 The Proposed Experiment

For different spin orientations a study of the sensitivity of the spin transport to ver-

tical betatron oscillations in the 180◦ bend of arc 7 is proposed. A measurement

of the spin transport associated with either a reference or perturbed orbit in arc 7

requires transporting the beam, following arc 7, through the recombiner, south linac,

extraction region, beam switchyard, and Hall C transport channel. The Møller po-

larimeter is located there. Because the CEBAF Møller polarimeter [Ro94] is designed

to measure only the longitudinal component of the beam polarization it is necessary

to study the spin rotation sensitivities in terms of the final sz component of the beam

polarization.

Analogous to the spin transport matrices presented earlier for arc 7, the cumulative

spin transport matrices for two perturbed trajectories: (1) a vertical offset of y =

+1 mm into arc 7 followed by the reference orbit from the end or arc 7 to the Møller

polarimeter and (2) a vertical offset of y = −1 mm into arc 7 followed by the reference

orbit from the end of arc 7 to the polarimeter, are presented here in terms of the

cumulative reference orbit matrix,

STMreference =


−0.97009 −0.00001 −0.24276

−0.00001 +0.99999 −0.00000

+0.24276 +0.00000 −0.97009

 (2.46)

40



STMy=+1mm = STMreference + 10−2


+0.004 −0.887 +0.002

−0.683 −0.007 −0.923

+0.004 −0.730 +0.004


difference

(2.47)

STMy=−1mm = STMreference + 10−2


+0.004 +0.887 +0.002

+0.683 −0.007 +0.923

+0.004 +0.730 +0.004


difference

(2.48)

A plot showing the difference in the sz components, δSz, of the beam polarization

at the polarimeter for the two trajectories is shown in Figure 2.10. The plot shows

that the sensitivity of the longitudinal polarization component to the two trajecto-

..

Figure 2.10: δSz for Arc 7 to Møller polarimeter.

ries which differ vertically by ±1 mm about the reference orbit in arc 7 is a small,

but measurable quantity. Because we are examining the sz component of the beam

polarization at the Møller polarimeter we only compare the differences between the

contributions of the matrix elements Szj, j ∈ (x, y, z), of the two spin transport ma-

trices.
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Of these matrix elements, as in the earlier simulations, the quadrupole coupled

matrix element, Szy, is dominant (Szx and Szz are ∼ 10−2 times smaller than Szy) in

the final spin transport matrix because of the perturbation in arc 7. Because it is this

matrix element which is the dominant contribution to the final sz component of the

beam polarization, we see a surface which is ∼ sin(θ) sin(φ). Recall that Szy couples

to sy and that for our simulations we have been writing the initial spin in terms of θ

and φ, i.e.,

sx = sin(θ) cos(φ)

sy = sin(θ) sin(φ)

sz = cos(θ). (2.49)

Because the orbit perturbations in arc 7 are equal and opposite we find that the value

of Szy changes sign between the two spin transport matrices. Thus the amplitude of

the surface shown in Figure 2.10 is equal to (Szy)y=+1mm−(−(Szy)y=−1mm), i.e., twice

the value of Szy or −0.0146.

In the end, the measurable polarization effect at the Møller polarimeter is caused

by the strength of the cumulative coupling to the quadrupole fields as given by Szy,

and is particularly sensitive to the extent to which the beam polarization entering arc

7 is vertical.
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Chapter 3

The Experiment

The goal of this experiment is to characterize the predicted sensitivity of the spin

transport to the beam orbit in a CEBAF recirculation arc. This is the first measure-

ment of this effect at CEBAF. The results provide information on the polarized beam

delivery performance of this latter accelerator and for future accelerators of this type,

such as the proposed Electron Laboratory for Europe (ELFE). This accelerator would

be similar to the CEBAF accelerator, but operate at beam energies up to 25 GeV,

where γ is greater, so the effects may be greater.

The experiment relies on the operation of many sub-systems of the accelerator.

A simplified schematic of the accelerator showing only elements necessary for the ex-

periment is shown in Figure 3.1. The experiment was performed at a beam energy

5% higher than the nominal design energy of the accelerator. The photoemission

electron source described in Section 3.1 provides the polarized electron beam for the

experiment. A spin manipulation system described in Section 3.2 can orient the beam

polarization over a solid angle ≈ 2π. The beam is then accelerated to an energy of

5 MeV and diverted to a Mott polarimeter (see Section 3.3) where the transverse com-

ponents of the beam polarization are measured. For the energy configuration of the

accelerator for this experiment, the beam bypasses the polarimeter and is accelerated

to an energy of 47.3 MeV before injection into the main accelerator. Two parallel

linacs joined by beam transport arcs allow the beam to pass multiple times through

the accelerator, or recirculate. The beam recirculates 3.5 times in the accelerator
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Figure 3.1: Layout of the accelerator systems used for this experiment. The triangles
in the recirculation arc represent vertical deflection magnets. Figure courtesy of M.
Stewart.

to an energy of 2.989 GeV. In arc 7 a pair vertical deflecting magnets perturb the

nominal beam orbit. The resulting large amplitude (≈ 15 mm peak–to–peak) vertical

betatron oscillation propagates through the recirculation arc. The orbit perturbation

is removed by a second pair of magnets at the end of the arc. In this way, the effect

of the perturbation on the beam orbit is contained within the arc. The beam orbit

requirements and the design, construction, and installation of the deflection magnets

used for the experiment are described in Sections 3.4 and 3.5, respectively. After arc

7 the beam is accelerated once more and extracted from the accelerator to the Hall C

experimental area at 3.407 GeV. Here, a Møller polarimeter described in Section 3.6

measures the longitudinal component of the polarization of the beam. The effect of

the beam orbit on the beam polarization is extracted by performing measurements of

the final longitudinal beam polarization component for different orbit perturbations

and polarization orientations. Finally, the beam feedback systems and accelerator

controls are discussed in Section 3.7 and Section 3.8, respectively.
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3.1 Polarized Electron Source

The polarized electron source [Du93] is a 100 keV electron gun. The polarized beam

is produced by photoemission from a gallium arsenide (GaAs) cathode described

in Section 3.1.1. The laser system and optical transport system are discussed in

Section 3.1.2. The dependence of the electron and optical beam polarization on the

laser system and polarizing optics are discussed in Section 3.1.3.

3.1.1 Photocathode Physics

The development of photoemission electron guns to create polarized electron beams

for accelerator applications using GaAs photocathodes has been discussed exten-

sively [Ca92, Si88]. The operation of these sources is based upon the excitation

of electrons between well defined states in the valence and conduction bands of GaAs

using circularly polarized photons of energy just above the minimum band gap. An

examination of the band structure of GaAs (Figure 3.2) indicates how it is possible to

Egap

S1/2

∆
P3/2

P1/2

mj= -1/2 +1/2

mj= -3/2 +1/2-1/2 +3/2

∆mj= -1∆mj= +1

33 11

(k=0)

k

E

Figure 3.2: GaAs band structure (a) and energy level diagram (b).

develop electron spin polarization. GaAs is a semiconductor with a direct band gap

transition energy of Egap ≈ 1.4 eV. The wavefunction of an electron at the band gap
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minimum is p–like in the valence band and s–like in the conduction band. Spin–orbit

coupling splits the p–like states into p1/2 and p3/2 where the p1/2 state has an energy

of about ∆ = 0.33 eV below the p3/2 state. Photoadsorbtion of light with photon

energy between Egap and Egap + ∆ excites electrons from p3/2 to s1/2.

The selection rules for the adsorption of right (σ+) and left (σ−) circularly po-

larized light are ∆mj = +1 and ∆mj = −1, respectively. The relative transition

probabilities for σ+ and σ− Photoadsorbtion are given by the Clebsch-Gordon co-

efficients. For example, σ+ photons of the correct energy will preferentially excite

electrons (∆mj = +1) to the conduction band in the ratio of 3 (mj = −1
2
) to 1

(mj = +1
2
). Consequently, applying Equation 2.26, the electron polarization created

in the conduction band of GaAs is P = 1−3
1+3

= −50%.

The conduction band is separated from the vacuum level (known as electron affin-

ity) by about 4 eV as shown in Figure 3.3. The photons necessary to selectively
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Figure 3.3: The band structure of GaAs near its surface: (a) p–type GaAs; (b) p–type
GaAs with a cesiated surface; and (c) p–type GaAs with a layer of Cs and O on its
surface. The energy of a free electron is shown as E∞ (from [Pi76]).

polarize the conduction band are near the band gap energy and therefore the elec-

trons which reach the conduction band do not have enough excess energy to overcome

the potential barrier and pass to the vacuum. The standard approach to remove this

barrier is to apply a monolayer of cesium to the GaAs surface. The electron affin-

46



ity is then reduced to almost zero. Oxidation of that layer using NF3 or O2 lowers

the electron affinity further until the vacuum level is below the conduction level in

the bulk semiconductor. Such a surface is said to have a negative electron affinity

(NEA). Electrons at the conduction band minimum are energetically allowed to leave

the crystal. They are formed into a beam by an accelerating potential applied to the

cathode.

Although the theoretical polarization limit of the beam is expected to be ±50%,

the measured polarization is less because of depolarization processes, such as spin

relaxation, as the electrons diffuse through the GaAs and exit the surface. Progress

has been made by using thin crystals of GaAs which limit this process. Bulk GaAs

photocathodes used at CEBAF provide a beam polarization of ≤ 42%.

Higher polarization gallium arsenide photocathodes have been developed [Ca92].

This is accomplished by first growing GaAsP atop GaAs, and then forming a final

thin layer of GaAs atop the GaAsP. The mis–match of the GaAs lattice to the smaller

lattice constant of GaAsP at the interface to the GaAs results in an approximate uni-

form compressive strain in the GaAs. This is equivalent to a uniaxial strain normal

to the crystal surface. This perturbation to the crystal potential removes the de-

generacy of the valence band in the GaAs. Consequently, the theoretical 50% limit

for bulk GaAs is removed, and by choosing the correct photon energy to excite only

one non–degenerate electron state higher polarization is produced. Strained GaAs

photocathodes used at CEBAF provide a beam polarization of ≤ 80%.

The yield of electrons from a photocathode is specified by its quantum efficiency.

This is the number of photoelectrons generated per incident photon. The photocur-

rent therefore depends upon the incident optical power (number of photons) and

the energy of the photons (wavelength) which can excite electrons to the conduction

band. In general, as the quantum efficiency of a prepared photocathode increases, the

polarization of the extracted electrons decreases. An increase in quantum efficiency

means a larger fraction of final state electronic transitions are able to populate the

conduction band, and consequently the resulting conduction band polarization is re-
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duced. Separately, contamination of the photocathode can degrade the NEA surface

and reduce the quantum efficiency.

The lifetime of a photocathode is defined as the time required for the quantum

efficiency to fall by 1/e. The lifetime is therefore related to the extent the pho-

tocathode has become contaminated or damaged during operation. Studies reveal

that ion back–bombardment of the cathode is the major process in determining the

photocathode lifetime in the CEBAF gun. Ion back-bombardment results from ion-

ization of the residual gas atoms in the ultra–high vacuum (UHV) environment by

beam electrons. Ions generated in the cathode–anode gap are accelerated back to-

ward the photocathode by the accelerating potential. The ions strike and damage

the photocathode surface and bulk. Consequently, the lifetime of photocathodes are

observed to depend upon the number of ions formed in the cathode–anode gap which

is proportional to the total charge extracted from the photocathode.

This experiment measures a small effect (∼ 10−2) on the beam polarization. To

acquire the statistical precision in the scheduled run period required maximizing the

figure of merit (I · P 2) of the polarized source. The beam current for the experi-

ment is limited to ≤ 4 µA by target heating considerations at the Møller polarimeter.

Consequently, the experiment was run using a higher polarization strained GaAs

photocathode to increase the figure of merit. The beam polarization during this

experiment was ≈ 70%.

3.1.2 Laser System and Optical Transport

The laser system [Po95] creates a train of circularly polarized optical pulses to extract

polarized electrons from the photoemission gun. The system is comprised of three

lasers, one dedicated to each experimental area. Each laser is composed of a gain

switched diode seed laser and a single–pass optical amplifier. Each diode seed laser is

pulsed with a repetition rate at the third subharmonic (499 MHz) of the accelerator

frequency. The train of optical pulses from each laser is combined by an optical
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transport system shown in Figure 3.4 to a common axis, to produce the 1497 MHz
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Attenuator
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Figure 3.4: Plan view layout of the laser system and polarizing optics. The laser
beams are transported in the plane of the optical table. They are reflected upward by
the vertical mirror and then pass through the Pockels cell and electron gun vacuum
window to the photocathode. Figure courtesy of M. Poelker.

microstructure of the accelerator. This pulse train is transported by mirrors and

optical polarizers to the photocathode. The polarizers set the optical helicity (σ+ or

σ−) of the beam.

Each laser produces optical pulses of ≈ 55 ps duration (30◦ RF). These pulses

propagate through the injector and are accelerated in the linacs. Because the photo-

cathode quantum efficiency decays at a rate proportional to the total charge extracted,

this choice improves the efficiency of the electron gun by a factor of 18 for 499 MHz

operation compared to that of a gun driven by a DC operated laser. No appreciable

cathode decay was noticed during the 4 day run period of the experiment.
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3.1.3 Polarization Stability

The electron beam polarization depends upon the optical beam polarization in two

ways. First, the degree of electron beam polarization depends upon the degree of the

optical circular polarization exciting the electronic states. For example, an electron

beam resulting from a linearly polarized optical beam will have zero polarization.

This is because a linearly polarized optical beam is equally composed of σ+ and σ−

circularly polarized photons. The optical circular polarization of a laser beam can be

determined by measuring the intensity of the beam as analyzed by a linear polarizer.

The degree of circular polarization is given by

Pcirc =
2
√

ImaxImin

Imax + Imin
, (3.1)

where Imin and Imax are the minimum and maximum optical power passed through a

linear polarizer rotated through 360 ◦. Pcirc was typically in excess of 99.9%. Second,

the helicity of the electron beam polarization depends upon the sense of the optical

beam polarization (helicity of the photons) incident on the photocathode. The mea-

surement of the beam polarization by Møller polarimetry relies upon a comparative

measurement of scattering rates between the two helicity states of the electron beam.

To accomplish this, the helicity of the optical beam is reversed at 1 Hz. An important

component of this experiment is to precisely and reliably reverse the optical helicity

in a regular and repeatable manner. This is accomplished with a Pockels cell.

The Pockels effect [He90], after Friedrich Carl Alwin Pockels, is a linear electro-

optic effect in a class of crystals exhibiting an induced birefringence with applied

electric field. The unique characteristic of these crystals is that they lack a center

of symmetry. There is no central point in the crystal through which every atom can

be reflected into an identical atom. The property of birefringence is characterized

by a difference in the index of refraction, and therefore the propagation velocity of

light, along two axes orthogonal to one another and an optical axis. The two axes

are commonly referred to as fast and slow to distinguish the relative propagation

velocities. Consider the example shown in Figure 3.5 of a linearly polarized optical
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Figure 3.5: The two components of the incident electric field propagate at different
velocities along the fast and slow axes. A net distance, or phase ∆φ, between originally
equal wave–fronts occur.

beam incident along the optic axis of a birefringent crystal at position A, at some

angle θ to the fast axis. The angle θ determines the amplitude of the electric field

along the fast and slow axes. The component of the incident electric field along the

fast axis propagates more quickly than along the slow axis, generating a net phase

difference between the two components at point B. If the amplitudes of the electric

field along the two axes are set equal (θ = 45◦) and the phase difference is adjusted

to be 90 ◦ (corresponding to a quarter of a wavelength) then by the exit of the crystal

at point C the resulting optical polarization will be circularly polarized.

Pockels cells are devices which house such a birefringent crystal and an electrode

structure to apply the electric field. The crystals are typically uniaxial, or show little

birefringence, ∆φ0, with no applied field. Such crystals are mounted in situ with

their optic axis closely parallel to the applied electric field. In this case the resulting
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birefringent phase is

∆φ =
2πn0

3r63Vc

λ0
+ ∆φ0, (3.2)

where n0 is the ordinary index of refraction, r63 is the electro–optic tensor coupling

constant characteristic of this class of crystal structure [He90], Vc is the voltage applied

across the crystal to produce the electric field, λ0 is the laser wavelength, and ∆φ0 is

the residual birefringence of the crystal.

The Pockels cell used [LM] is a single crystal of potassium dideuterium phosphate

(KD2PO4), or KD∗P . The crystal is housed in a cell with a 10 mm aperture im-

mersed in an index matching fluid (FC-43) between the crystal and window surface.

The windows are anti–reflection coated to avoid resultant beam satellites from the

photocathode due to multiple optical reflections. The crystal is wedged at 30′ to avoid

etalon effects. For this crystal, n0 ≈ 1.52 and r63 ≈ 23.310−12 m/V.

The laser used for this experiment was operating at a wavelength λ0 ≈ 855 nm.

The quarter–wave retardation voltages are given by

V±λ
4

= ±2610 V − 29 V
deg

· ∆φ0. (3.3)

By alternately applying these voltages across the Pockels cell the optical polarization

and electron beam helicity are reversed. Optical polarization reversal by Pockels

cells can be done rapidly (∼ nanoseconds). Stability of the applied high voltage

signal and decaying resonant modes of the optical polarization due to the electro-

mechanical stresses on the crystal during the high voltage transition typically result

in polarization instability lasting ∼ 100 µsec following a transition. Data are not taken

during this period of instability. Typically ≈ 250 µs is allowed for the retardation of

the Pockels cell to fully stabilize following a voltage reversal.

The planned helicity reversal frequency for this experiment was 30 Hz, to average

line frequency related noise to zero. However, due to a component failure the Pockels

cell high voltage switching electronics would not stabilize the applied cell voltage to

better than 180 V for ≈ 25 ms following each transition making a 30 Hz reversal rate
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impractical. A decision was made to reduce the reversal rate to 1 Hz and adjust the

veto period following helicity reversal to 30 ms.

A characteristic of the laser system is that the laser wavelength may be tuned

over a narrow range of wavelengths by adjusting the temperature of the laser. A

change in laser wavelength can have two effects on the electron beam polarization.

First, the degree of circular polarization relies on tuning the Pockels cell for a given

wavelength. Second, the beam polarization depends upon the photon energy, Eλ = hc
λ

,

where h is Planck’s constant, c is the speed of light, and λ is the laser wavelength.

This temperature dependence, however, is adiabatic compared with the 1 Hz helicity

reversal. In a test to determine the effect of varying the laser wavelength, the seed

laser temperature was varied over a range ∆T =15 ◦C or, equivalently, a wavelength of

∆λ =4.5 nm. At a few seed laser temperatures the beam polarization, photocathode

temperature, and beam current were measured. The results are shown in Figure 3.6.

No significant dependence of the beam polarization over this temperature range was

observed. Further, the seed laser temperature is stabilized to better than 0.5 ◦.

3.2 Injector Spin Manipulators

This section describes the spin manipulation system used in the injector, and mod-

ification to it made for this experiment. The requirements of the spin manipulation

system for the accelerator are described in Chapter 2. The specific requirement for

this experiment is that the beam polarization be oriented following the electron gun

over a solid angle ≥ 2π of the unit sphere. This condition assures that a broad range

of polarization orientations (or their reverse) can be reached at recirculation arc 7.

In this way, the nominal polarization precession offset between the injector and arc

7 can be corrected. Two simple rotations accomplish this. The first rotation θWien is

determined by a spin rotator, named a Wien filter, described in Section 3.2.1. The

second rotation φS12 is determined by a combination of two solenoid magnet spin

rotators described in Section 3.2.2. Spin rotator calibration data for the devices is
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Figure 3.6: Varying the seed laser temperature shows no discernible effect on the beam
polarization. Statistical error bars only shown. Systematic uncertainty in absolute
polarization is approximately 5%.

given in Sections 3.3.7 and 3.3.8, respectively.

3.2.1 Wien Filter Spin Rotator

A Wien filter [Sa77] is a static electromagnetic device. It consists of crossed electric

( �E) and magnetic ( �B) fields transverse to the particle motion (�β) and each other

as shown in Figure 3.7. The usefulness of a Wien filter is that the polarization of

a beam passing through the device can be rotated without deflecting the outgoing

central orbit. However, the device focuses in one plane, and is thus astigmatic. This

is accomplished by two conditions. First, recall that the precession of an electron spin

in the plane normal to a dipole field is given by ηy = aγθb where θb = e
p

∫
Bydl. By

adjusting
∫

Bydl the precession angle, ηy, can be controlled. However, the electrons
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Figure 3.7: Diagram of Wien filter indicating the rotation of the beam polarization
relative to the beam direction in crossed magnetic and electric fields (β = E

B
).

also experience a deflecting force from the magnetic field. The second condition

requires that an electric field be applied to just balance this deflecting force. The

strength of the electric field is determined by considering that the net Lorentz force

on the electron must be zero,

�F = q

�E +
�β

c
× �B

 = 0. (3.4)

The second condition then requires that β = E
B

.

3.2.2 Solenoid Spin Rotators

Solenoids are used in the low energy beamline to focus the beam. The inverse focal

length of a solenoid lens in the paraxial approximation is given by [La77]

1

f
=

(
q

2p

)2 ∫
B2

zdl, (3.5)

where q and p are the particle charge and momentum, respectively, and
∫

B2
zdl is

the integral of the square of the axial component of the solenoid field taken along

the central axis of the magnet. Recall from Equation 2.8 that the electron spin will

precess about the axial solenoid field by an amount

ηz =
ge

∫
Bzdl

2p
, (3.6)
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where g is the electron gyromagnetic factor,
∫

Bzdl is the integral of the axial com-

ponent of the solenoid field taken along the central axis of the magnet, and the other

quantities are already defined.

The solenoid magnets used for spin manipulation are constructed using two sepa-

rate coils in one magnetic casing. If the number of turns in each coil is identical they

can be connected in series to produce opposing fields and driven by a single power sup-

ply to provide focusing without a net polarization rotation ((ηz)Coil1 +(−ηz)Coil2 = 0).

Alternatively, each coil in the magnet can be powered by a separate power supply to

produce both the desired beam focusing and spin rotation conditions simultaneously.

The details of the calculation for this configuration are given in Appendix B.

The injector beamline originally employed a single solenoid spin rotator capable

of rotations of ηz ≈ ±47◦. However, this was insufficient for studying the desired

angular dependence of the beam orbit on the beam polarization. Specifically, the

beam polarization could not be oriented transverse to the beam momentum along the

ŷ direction. Another solenoid magnet located in the injector beamline was modified

for this experiment to provide an additional rotation of ηz ≈ ±45◦. The focusing for

each solenoid magnet, however, was kept constant for all spin rotation setpoints by

adhering to the constraint that
∫

B2dl remain constant.

3.3 Injector Mott Polarimeter

It is important to measure the electron beam polarization and orientation prior to

injection into the main accelerator. This localizes the polarimetry near the electron

source and eliminates the requirement for using the entire accelerator to measure the

beam polarization. In this way photocathodes can be studied and the spin rotators

calibrated, and the polarization of the beam for the nuclear physics experiments mea-

sured. An injector polarimeter based on Mott scattering was designed, constructed,

and commissioned in parallel with this experiment.

The physics of Mott scattering is described in Section 3.3.1. The advantages of
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conducting Mott polarimetry at higher energies are discussed in Section 3.3.2 and the

design of a 5 MeV Mott polarimeter in Section 3.3.3. Discussion of the polarimeter

and the analysis approach to extract the beam polarization from a measurement is

presented in Section 3.3.4. Section 3.3.5 shows the calculation of the experimental

asymmetry from the detected Mott scattering. Finally, results are presented in Sec-

tion 3.3.6 for measuring the effective Sherman function for gold target foils of varying

thickness (0.01 µm to 5 µm). A 1 µm target is used for this experiment.

3.3.1 The Physics of Mott Scattering

In the late 1920’s N.F. Mott calculated the scattering of high energy electrons from

the bare nucleus of atoms with a large nuclear charge [Mo29]. Classically, the large

angle scattering in this case corresponds to a small impact parameter; the scattered

electron experiences a magnetic field in its rest frame resulting from the motion of

the electric field of the nucleus. The interaction of the orbital angular momentum

(magnetic field) with the magnetic moment of the scattered electron (spin) leads to

a spin–orbit coupling term in the scattering potential. The results in a term in the

Mott cross–section which depends on the incident electron spin orientation. Referring

to Figure 3.8 the cross section for the scattering angle θ is written as

Beam Direction

P (polarization)

n (unit normal)

y

x

z

k’ (scattered electron)

k (incident electron)

target θ

Figure 3.8: Diagram of Mott scattering from a target. In this diagram, the scattering
angle θ is in the plane formed by x̂–ẑ.
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σ(θ, φ) = I(θ)[1 + S(θ)�P · n̂], (3.7)

where I(θ) is the unpolarized cross section

I(θ) =

(
Ze2

2mc2

)2

· (1 − β2)(1 − β2 sin2(θ
2
))

β4 sin4(θ
2
)

. (3.8)

S(θ) is known as the Sherman function and �P is the incident electron polarization.

The unit vector n̂ normal to the scattering plane is defined by

n̂ =
�k × �k′

|�k × �k′|
, (3.9)

where �̄hk ( �̄hk′) is the incoming (outgoing) electron momentum.

The importance of the value of the Sherman function is that it determines the size

of the scattering asymmetry, or how well the interaction distinguishes between the

two spin states. The unpolarized part of the cross–section effectively averages over

the initial spin state, whereas, the Sherman function contains the angular scattering

amplitude which includes the initial spin state. Consider an electron beam with

polarization �P transverse to the scattering plane of a target, i.e., parallel or anti-

parallel to n̂. The target is typically a high atomic number material. This is done

because the spin–orbit coupling increases with the nuclear charge. The number of

electrons scattered through an angle θ to the right and detected, Nr, is proportional

to 1 + PS(θ) and the number scattered to left and detected, Nl, is proportional to

1 − PS(θ). The scattering asymmetry is defined as the difference in the number of

electrons scattered right versus left divided by their sum,

ε =
Nr − Nl

Nr + Nl
= PS(θ). (3.10)

This formalism describes the scattering from a single atom where the Sherman

function is calculated from the basic electron–nucleus cross section. It has been cal-

culated with corrections for the effects of screening by the atomic electrons [Li63],

and the finite distribution of nuclear charge [Ug70]. In reality, a target foil contains

so many atoms that multiple and plural scattering also occurs, which tend to reduce
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the intensity asymmetry between the left and right detectors. The measured asym-

metry is then smaller than what would be expected from using the calculated single

atom Sherman function. Consequently, it is the effective Sherman function which is

measured,

ε =
Nr − Nl

Nr + Nl

= PSeff(θ). (3.11)

This depends upon the foil material (Z) and target thickness (density). The dilution

of the Sherman function due to plural and multiple scattering can be as much as

44% [Du93] for a 100 keV beam striking a 0.1 µm gold foil. There are two distinct

advantages of Mott polarimetry, however, at an energy of 5 MeV; the dilution by

multiple scattering is smaller (a big effect due to the much lower cross section), and

the value of the single atom Sherman function is larger (≈ 20% effect).

The effective Sherman function can be determined. This is done by measuring the

experimental asymmetries for a fixed polarization (known or unknown) for a variety

of target thicknesses. The measured asymmetries are plotted versus target thickness

and extrapolated to the zero target thickness to give A0, the asymmetry expected for

scattering from a single atom. The functional form of the fit is made assuming that

the scattering rate depends to first and second order on the target thickness. The

linear dependence carries the single elastic scattering dependence. The quadratic term

carries no analyzing strength and corresponds to multiple scattering in the target.

Nr,l = (1 ± PA0) · t + α · t2. (3.12)

By applying Equation 3.11 the resulting scattering asymmetry is determined

ε ∼ PA0

1 + αt
. (3.13)

In this way A0 and α are determined. Using the single atom Sherman function S(θ)thy

the polarization of the beam is finally calculated

P =
A0

S(θ)thy
. (3.14)
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Once the polarization is measured the effective Sherman function can be determined

at different foil thicknesses by Seff = εt/P . An example is given for the Mott gold

targets in Section 3.3.6.

3.3.2 5 MeV Mott Polarimeter

Low–energy Mott polarimeters (Ek ≤ 100 keV) based on elastic scattering from high–

Z targets have been used in a variety of applications. However, multiple and plural

scattering at low energies reduce the effective analyzing power even in very thin targets

(t ≈ 100 nm). The large cross section at the maximum analyzing power scattering

angle (θ = 120 ◦) limits the usable current to nanoamperes and requires thin targets.

These targets are difficult to manage and their thickness difficult to measure. A

variation of the low–energy Mott polarimeter has been developed and is installed at

Jefferson Laboratory [Pr97]. It is located at the 5 MeV region of the injector, as

shown in Figure 3.9. Mott scattering at this energy does not suffer the same dilution

Figure 3.9: Drawing showing the location of the Mott polarimeter on a short beamline
segment in the injector region. The 5 MeV dipole magnet field strength is adjusted
to deliver the beam to the polarimeter. Figure courtesy of D. Machie.

of the analyzing power by plural and multiple scattering. The absolute analyzing

power is larger and the cross section smaller than at Ek = 100 keV, allowing for

polarization measurements at microampere average beam currents. The RF structure

of the beam makes monitoring the beam current (resonant cavity) and beam position
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(tuned antenna) simpler along the beamline. The beam profile can be monitored at

this energy and beam current through the use of transition radiation.

3.3.3 Design

The polarimeter design shown in Figure 3.10 is straight forward. A linear actuator is

Figure 3.10: Schematic of the Mott scattering chamber with detectors. Figure cour-
tesy of D. Machie.

mounted vertically on the scattering chamber, supporting an aluminum target ladder.

The target ladder contains five targets in calibrated locations. Four locations are used

for target foils, the fifth remains empty to measure the target ladder background. A

0.1 µm thick gold foil always remains as a standard target. The remaining target

locations contain gold foils of different thickness (0.01 µm to 5 µm) for performing a

target thickness extrapolation. A vacuum compatible stainless steel disk (1′′ diameter)

polished to a mirror surface is located inside the scattering chamber. This allows

the target foil to be viewed by a CCD camera through a vacuum port. When the
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electron beam impinges the target foil at 5 MeV, optical transition radiation (OTR) is

produced [Pi96]. The OTR from the foil is imaged by the camera providing real–time

monitoring of the beam intensity, profile and position at the target. This monitor,

in principle, provides a diagnostic for helicity correlated beam motion. The intensity

of the OTR is recorded using the CCD camera. Intensity profiles of the OTR in

two transverse directions are shown in Figure 3.11. The spatial resolution, limited
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Figure 3.11: Horizontal (x) and vertical (y) beam profile using the Optical Transition
Radiation (OTR) diagnostic at the Mott polarimeter. Figure courtesy of P. Piot.

by the camera, is 100 µm. From the profile it is clear that helicity correlations in

the beam centroid or profile do not appear at a level approaching 10−3. The OTR

also provides a reference for monitoring the beam quality at the polarimeter. In

Figure 3.11 the horizontal profile at the polarimeter target is broader than the vertical

profile. The momentum spread of the beam, ∆p
p

, as dispersed by the 5 MeV dipole

magnet (horizontal bend) can be considered as the cause. The energy spread and

total beam energy at this dipole is ∆E ≈ 9 keV and E ≈ 5.52 MeV, respectively. The

corresponding spread in the beam momentum is ∆p
p

= 0.165%. The spreading of the

horizontal beam profile is calculated using the dipole bend angle θ = 12.5◦ and the
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distance between the dipole and target foil l = 170 cm. The result is

∆x =
∆p

p
· θ · l = 0.61 mm, (3.15)

apparently consistent with the larger beam width in the horizontal beam profile.

Four electron detectors measure the backscattered electrons from the target foil.

Two are in the horizontal (vertical) plane of the polarimeter to measure the left–

right (up–down) asymmetry to determine Py (Px). The Sherman function for a range

of kinetic energies is shown in Figure 3.12. The detectors are located at a mean

Figure 3.12: Sherman function S(θ) for scattering by gold at various kinetic energies.

backscattering angle θ = 172.7 ◦, the calculated maximum of the Sherman function

at 5 MeV.

The backscattered electrons pass through two baffles within the scattering cham-

ber, to limit the inelastic background as seen by the detectors, and exit through a

0.20 mm thick aluminum vacuum window. In air, a pair of aluminum (t = 12 mm)

and copper (t = 6.4 mm) apertures define the solid angle acceptance of the detec-

tor. Each detector is constructed from a 3′′ diameter by 1.25′′ thick disk of NE102a
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plastic scintillator (CH1.1). The scintillator is optically glued to a short conic light

guide that mates to the face of a Thorn EMI 9807B phototube and divider base.

The entire detector sits in a housing that is mounted behind the vacuum window.

The defining acceptance, determined by the final copper aperture, is located ≈ 70 cm

from the polarimeter target. The aperture is a hole 1 cm in diameter that subtends

a solid angle ∆θ = 0.819◦ and ∆φ = 4.72◦. The acceptance of each detector is then

∆Ω = 0.16 msr. The energy loss of the detected electron in the plastic scintillator is

determined by collisional (dominant at this energy) and radiative losses,(
dE

dx

)
tot

=

(
dE

dx

)
col

+

(
dE

dx

)
rad

= (1.861 g/cm2)col + (0.0665 g/cm2)rad (3.16)

The minimum energy loss (straight line path) in this thickness (t = 3.175 cm) of

scintillator (ρ = 1.032 g/cm3) is

∆E =

(
dE

dx

)
tot

ρt ≈ 6.3 MeV. (3.17)

Therefore, the scintillator thickness is capable of fully stopping the most energetic

electrons and the signal pulses for the elastic Mott electrons are proportional to the

beam energy.

3.3.4 Pulse Height Spectra

The signals from the four detectors are processed by the chain of electronics shown

in Figure 3.13. Event signals originate at the Mott detector. Events below ≈ 3 MeV

are electronically discriminated against at the start of the chain. Below this energy

the spectra have been shown to be mainly a photon background [St99] that carries

no asymmetry due to the polarization of the beam. The integrated background rate

(normalized to beam current and target thickness) below the electronic threshold is

≈ 1 MHz/(µA − µm). Events above the threshold are counted in a scaler array and
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Figure 3.13: The electronics chain for the 5 MeV Mott polarimeter is shown. Signals
originating at the Mott detector are discriminated against in energy. Valid events
are charge–digitized in an ADC and stored in a histogramming memory. In parallel,
valid events are counted by scalers. A time reference and proportional beam current
signal are counted by scalers for normalizing the measured experimental asymmetry
to the total charge delivered per helicity state. All events are separated according to
detector and helicity.

integrated in a charge sensitive analog to digital converter (ADC). The ADC signal

is directly binned to a histogramming memory component for each detector. The

beam current is measured using a resonant cavity monitor and associated electronics

to produce a frequency signal which is proportional to the beam current. This signal

and a 1 MHz clock signal for time normalization purposes are sent to scalers as well.

All of the recorded signals are separated according to the electron helicity state during

which they were measured. A typical set of pulse height spectra for the four detectors

(separated by helicity) is shown in Figure 3.14. The discrimination against signals

≤ 3 MeV is apparent near channel 440. The elastic peak (5 MeV) occurs at about

channel 785. Recall that the scattering asymmetry occurs for the component of the
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Figure 3.14: Pulse height spectra for the four Mott detectors is shown. The differ-
ence of the left and right spectra for the two helicity states indicate a large vertical
polarization. The similarity of the up and down spectra for the two helicity states
indicate no horizontal polarization.

polarization normal to the scattering plane. Comparison of the spectra for each

detector reveals the scattering asymmetry and polarization. The difference in the left

and right profiles indicate a vertical beam polarization. However, the similarity of the

up and down detector spectra indicate no horizontal polarization. A characteristic of

the background is that it lacks an asymmetry. The lowest energy channels (photon)

carry no information of the beam polarization, while singly scattered elastic electrons

carry the full information. The extent to which these overlap between channels 500

and 700 is seen by computing the asymmetry for a single detector between helicity

states. A plot of the asymmetry of the left detector as a function of the channel

number is shown in Figure 3.15. The asymmetry is computed as

ε =
L+ − L−

L+ + L− , (3.18)
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Figure 3.15: The left detector spectra for both helicities are shown in the upper plot.
The asymmetry as calculated by Equation 3.18 is shown in the lower plot. A running
average over 50 channels is used. Vertical bars delineate ±1.5σ

using a running average 50 channels wide. The lowest energy channels show no asym-

metry. Lower threshold spectra show this zero asymmetry continues. The overlap

region results from a combination of higher energy bremsstrahlung photons, medium

energy inelastic scattering from the target chamber, and the radiative low–energy

tail of the elastic peak. This tail is proposed to retain some asymmetry because the

radiative losses are not expected to take away the asymmetry of the scattered beam.

The asymmetry is clearly stable over ≈ ±1.5σ of the elastic peak.

The method for extracting the elastic cross section is to first perform cuts in each

spectrum isolating a section of the background and elastic peak. The background

and peak are then fit using a decaying exponential function and a Gaussian profile,
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respectively. The form of the fit is

M(x) = e(p1+p2x) + p3e
− 1

2

(
x−p4

p5

)2

. (3.19)

The off–line analysis of Mott spectra is performed by a Fortran program. The algo-

rithm for the fit uses the Levenberg-Marquardt [Pr92] method of non–linear least–

squares minimization. The parameter p1 scales the overall background rate (at thresh-

old) and p2 the characteristic background profile. As explained earlier p1 and p2 are

helicity independent. The parameters p3, p4, and p5 determine the amplitude, cen-

troid, and width of the Mott signal. The amplitude p3 varies in proportion to the

beam polarization and therefore depends on the beam helicity. The centroid of the

peak p4 may shift by ≈ 1 channel due to detector pile–up effects with helicity state.

This depends upon the overall rate (beam current and target thickness). The peak

width, p5, is characteristic of the detector energy resolution and therefore does not

depend upon the beam helicity.

A fit of the left detector profile for a particular run for the negative helicity state

(L−) is shown in Figure 3.16. Preliminary cuts were made at channels 480 and 1000.

The resulting fit parameters are p1 = 8.984, p2 = −8.254 × 10−3, p3 = 462.47, p4 =

797.29, and p5 = 31.857. A typical χ2 per degree of freedom (dof) of approximately 3

is obtained with this functional form. This results because of the poor representation

of the fit function for the region of overlap between the inelastic background and

low–energy Mott spectrum. For the example given χ2/dof = 3.5. Cuts at ±1σ are

used for extracting the Mott asymmetry. In this region the background (≈ 3%) is

subtracted before the asymmetry is computed. A statistical uncertainty of < 0.5%

was obtained by performing polarimeter measurements lasting 6 minutes.

3.3.5 Determination of Mott Elastic Rate and Experimental Asymmetry

Consider as an example the up or down detector in Figure 3.14. Both represent the

measurement a nominally unpolarized beam. The number of elastic events extracted
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Figure 3.16: The upper plot is a pulse height spectrum with the total fit function
shown in a linear scale. The lower plot is the same pulse height spectrum with the
background and elastic fits shown separately in a logarithmic scale. The hatched
region shows a cut at ±1σ (within the ±1.5σ region of asymmetry stability shown in
Figure 3.15. Both cases shown are for the left detector.

from each spectrum is ≈ 30, 000. In this case, the target was the 1 µm gold foil, the

beam current was ≈ 3.3 µA, and the measurement time was 120 seconds. Therefore,

the normalized elastic rate measured is Relastic = 75 Hz/(µA · µm). Alternatively, the

normalized theoretical elastic rate for the detector is determined by calculating

Rthy = σ(θ = 172.7◦) · ρAu · tfoil ·
NA

MAu
· ibeam

e−
· ∆Ω · S ≈ 74.5 Hz/(µA · µm). (3.20)

Here σ(θ = 172.7◦) = 5.051× 10−26 cm2/sr is the cross–section, ρAu = 19.32 g/cm3 is

the density of gold at 20◦C, tfoil = 1 µm is the target thickness, NA = 6.022 × 1023 mol−1

is Avagadro’s number, MAu = 196.97 g/mol is the molecular mass of gold, ibeam =

1 µA is the beam current, e− = 1.602 × 10−19 C is the electronic charge, ∆Ω =

0.16 msr is the solid angle for a detector, and S ≈ 0.25 is a correction factor for
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multiple scattering in the aluminum vacuum window of the polarimeter. The multi-

ple scattering results in a loss of ≈ 75% of the Mott electrons at the final collimator.

The multiple scattering angle (projected into a transverse plane of the defining col-

limator) has been calculated with the following formula [PDG98], which is accurate

to within 11%,

ΘMS =
13.6 MeV/c

pcβ

√
L

Lrad

(
1 + 0.038 ln

(
L

Lrad

))
. (3.21)

Here p = 5.50 MeV/c is the electron momentum, β = 0.996, L = 0.05 cm is the

aluminum vacuum window thickness, and Lrad = 8.9 cm is the radiation length for

aluminum. The multiple scattering angle is then ΘMS = 149 mrad. Since the defin-

ing detector aperture is approximately 7 cm away from the vacuum window the beam

spreads to a radius of 1.04 cm. The radius of the defining aperture is 0.5 cm. Conse-

quently, the portion of the scattered electrons reaching the detector is proportional to(
raperture

relectrons

)2
≈ 25%. Without the correction for the aluminum window the ideal Mott

elastic rate for the detector acceptance would be 4 times larger, or 300 Hz/(µA · µm).

Although Equation 3.11 can be used to compute the experimental asymmetry,

instrumental errors between the detectors introduce uncertainty in the measured po-

larization. These errors are introduced by inequalities in the pairs of detectors, or

misalignments and inhomogeneities of the beam or target. Consider again the up and

down detectors. Consider the case where the beam is aligned well and scatters into

both detectors at an angle θ. The efficiencies (Qu, Qd) and solid angles (∆Ωu and

∆Ωd) of the detectors are different. For a beam of spin–up electrons the number of

scattered elastic electrons detected are then

N+
u = i+ρ+Qu∆ΩuI(θ)[1 + PS(θ)]

N+
d = i+ρ+Qd∆ΩdI(θ)[1 − PS(θ)], (3.22)

where i+ and ρ+ is the beam current and target density for this spin state. If

Qu∆Ωu 
= Qd∆Ωd an experimental asymmetry due to the detectors exists. This

can be eliminated by reversing the helicity of the electron beam. After reversing the

70



electron helicity (by reversing the optical helicity with a Pockels cell) the spin–down

electrons are detected

N−
u = i−ρ−Qu∆ΩuI(θ)[1 − PS(θ)]

N−
d = i−ρ−Qd∆ΩdI(θ)[1 + PS(θ)], (3.23)

where i− and ρ− are the beam current and target density for this spin state. These

two equations can be combined to produce

√
N+

u N−
d = N+ =

√
i+i−ρ+ρ−QuQd∆Ωu∆ΩdI(θ)(1 + PS(θ))√

N−
u N+

d = N− =
√

i+i−ρ+ρ−QuQd∆Ωu∆ΩdI(θ)(1 − PS(θ)). (3.24)

The experimental asymmetry is then computed by calculating the super–ratio

ε =
N+ − N−

N+ − N− = PS(θ), (3.25)

which is independent of the beam current and target uniformity between helicity

states (assuming no other helicity dependencies), and the detector solid angle and

efficiencies. The experimental asymmetries for the Mott spectra like those shown in

Figure 3.14 are calculated this way. First, the number of events in the elastic peak is

determined by the fitting method and next the experimental asymmetry is calculated.

3.3.6 Mott Target and Analyzing Power

The analyzing power for a series of varying thickness gold (Z=79), silver (Z=47), and

copper (Z=29) targets have been studied [Pr97] in the Mott polarimeter to determine

their effective analyzing powers. The single–atom Sherman functions, S(θ), have

been calculated as outlined in reference [Sh56] and are shown for these materials in

Figure 3.17.

The Mott polarimeter scattering chamber detector geometry is optimized for the

analyzing power maximum scattering angle for gold targets. The targets are routinely

made with tenths of a micron thickness. The effective Sherman function for the
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Figure 3.17: Sherman function calculated for copper (Cu), silver (Ag), and gold (Au)
at a kinetic energy of 5 MeV.

0.1 µm gold foil is determined by the following procedure. First, the experimental

asymmetries were measured for a series of gold target foils of varying thickness. The

data shown in Figure 3.18 are fit with the functional form,

εx =
A0

1 + αt
. (3.26)

The best fit values are A0 = 0.359 ± 0.004 and α = (0.316 ± 0.012) µm−1.

The theoretical value of the Sherman function at this scattering angle has been

calculated to be -0.522 with an uncertainty of 1% [Sh56] attributed to the degree

of convergence in the method of calculation. An additional uncertainty of 0.5% is

estimated due to electron screening effects of the outer shell electrons of the gold

nuclei [Li63]. Including nuclear size corrections to the point–like nucleus scattering

problem [Ug70, St99] reduces the Sherman function by (1.3 ± 0.4)% and averaging

the Sherman function over the detector acceptance further reduces the value by 0.4%.

Combining the corrections and uncertainties results in the value −0.513 ± 0.013.

Using the zero–thickness extrapolation, the polarization of the beam for this mea-

surement is 0.359±(0.004)stat±(0.011)sys

−0.513±0.013
= −0.700± 0.034. The effective Sherman function
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Figure 3.18: Data for gold foil target thickness extrapolation.

for the 1.0 µm gold target foil is then 0.274±(0.001)stat±(0.008)sys

−0.700±0.034
= −0.391 ± 0.023. This

value indicates a dilution of the Sherman function by ≈ 24%. Note that for the 0.1 µm

gold target foil Seff = −0.506 indicating dilution of this foil thickness by only 3.1%.

3.3.7 Wien Filter Calibration

A calibration of the Wien filter was performed using the 5 MeV Mott polarime-

ter [Pr97] (described in Section 3.3). The Wien magnet current (independent param-

eter) was set for 12 rotations spanning ≈ ±110 ◦ and the resulting polarization was

measured at the polarimeter. In this configuration the Wien filter sets the polarization

to 12 orientations which sweep out a circle in the x–z plane as depicted in Figure 3.19.

The polarimeter measures the transverse components of the beam polarization and

therefore resolves the corresponding sine–wave amplitude in the x̂ direction. The data

and a fit of the form Px = P0 sin(kiWien + φ0) is shown in Figure 3.20. The polariza-
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Figure 3.19: The Wien filter is calibrated by rotating the incoming polarization (par-
allel to the beam momentum) to 12 orientations within ≈ ±110◦. The outgoing
polarization was then measured at the Mott polarimeter.

tion Px is the measured experimental asymmetry divided by the effective Sherman

function. The value of the Sherman function used is Seff = −0.391 as measured for

the 1 µm gold target foil (Section 3.3.6). The error bars are statistical only. The

absolute uncertainty in the amplitude of the polarization is about 5%. The best–fit

parameters are P0 = (−69.9±0.1)%, k = (12.09 ± 0.08)
deg

A
, and φ0 = (0.98 ± 0.22) ◦.

The χ2 of the fit is 1.09 per degree of freedom. A correction to the phase, φ0, must

be made to account for the polarization rotation incurred when the beam is steered

by (−12.5 ± 0.4) ◦ from the injector beamline to the polarimeter beamline. The total

beam energy at this location is 5.52 ± 0.10 MeV (KE = 5.01 MeV) and the correction

to the measured precession is (−0.156 ± 0.005) ◦. Consequently φ0 = (1.14 ± 0.21) ◦.

3.3.8 Solenoid Spin Rotator Calibration

A calibration of the two solenoid spin rotators was performed using the Mott po-

larimeter. Using the calibration data for the Wien filter the beam polarization was

oriented transversely prior to the solenoid magnets. For each solenoid the coil cur-

rents were set to produce 7 different precession angles. Each set of coil currents must
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Figure 3.20: Wien filter calibration data and a sinusoidal fit to determine the spin
rotation angle for the device setpoints. The error bars shown are statistical.

produce very similar focal lengths to transport the beam through the injector. The

calculations made to produce the proper sets of coil currents is given in Appendix C.

For these tests transmission of the electron beam through the injector was routinely

successful indicating that the rotation angle could be set while maintaining the proper

solenoid focal length. The 7 different precession angles were between ≈ ±50 ◦ sweep-

ing out an arc in the x–y plane as shown in Figure 3.21. The polarimeter measures

both transverse components of the beam polarization, which can be written in terms

of the polarization of the beam, P0, and the rotation angle, φ,

Px = P0 cos(φ)

Py = P0 sin(φ). (3.27)

The rotation angle is then directly extracted from the two components using

φ = tan−1
(

Py

Px

)
. (3.28)
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Figure 3.21: The solenoid spin rotators are calibrated by rotating the incoming po-
larization (transverse to the beam momentum) to 7 orientations within ≈ ±50◦. The
outgoing polarization was then measured at the Mott polarimeter.

A plot of φ versus the difference in the coil setpoints, iB − iA, and a linear fit of the

form φ = kS1(iB − iA) + φS1 is shown in Figure 3.22 for the first spin rotator. The

best fit yields kS1 = (0.0370 ± 0.0003) deg /mA and φS1 = (1.48 ± 0.19) ◦. The second

solenoid spin rotator is similarly calibrated and the results are shown in Figure 3.23.

The linear best fit yields kS2 = (0.0323 ± 0.0002) deg /mA and φS2 = (0.96 ± 0.19) ◦.

The difference from zero of the phase offsets, φS1 or φS2 , may result from the

residual field in the magnet. The uncertainties in the fit parameters result from the

goodness of the fit.

3.4 Recirculation Arc

The recirculation arcs transport the electron beam from the end of one linac to the

beginning of the next for successive acceleration. A description of the beam trans-

port and basic optical properties of the recirculation arcs is given in Section 3.4.1.
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Figure 3.22: Solenoid spin rotator S1 calibration results and a linear fit to determine
the accuracy of the calculated coil current setpoints.

The beam orbit requirements for this experiment are described in Section 3.4.2. The

approach for determining the deflecting magnet field strengths is discussed in Sec-

tion 3.4.3.

3.4.1 Optical Properties

The optical setup for the recirculation system is that it not degrade the beam quality

from one linac to the next. To do this, the recirculation arcs are designed to be

(a) achromatic (final beam position and angle are energy independent); (b) imaging

(beam profile exiting one linac enters the next linac unaffected); and (c) the reference

orbit path length be an integral number of RF wavelengths (to maintain the beam

in phase with the acceleration cavities). The achromaticity is accomplished with the

transport optics by making sure the net dispersion (and first derivative of dispersion)
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Figure 3.23: Solenoid spin rotator S2 calibration results and a linear fit to determine
the accuracy of the calculated coil current setpoints.

through the recirculation arc vanish at each linac exit and entrance. The imaging

condition is met by choosing the quadrupole focusing such that the number of beta-

tron oscillations in each arc is a whole or half–integer. For the π bending section the

horizontal betatron tune νx = 5 and the vertical betatron tune is νy = 3. Including

the spreader and recombiner, νx = 7 and νy = 5. The requirement for a multiple

number of RF wavelengths is met by a segment of magnets outside of the arc. These

magnets constitute what is called a dogleg. The doglegs provide for adjusting the path

length of the entire orbit at either end of the accelerator, between each linac. The

total magnetic adjustment at each dogleg can provide about 5% of an RF wavelength

path length variation (≈ 8 mm) and keep the beam arrival time at the following linac

in phase with the RF acceleration.
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3.4.2 Orbit Perturbation Requirements

The experiment requires a series of measurements, each between two different per-

turbed orbits. In this way, the relatively small sensitivity to the beam polarization

is easier to determine. An absolute measurement of the effect would increase the

difficulty of the experiment unnecessarily. Each orbit perturbation is introduced at

the entrance to arc 7 and removed at the exit of this arc. In the same way that parity

violation experiments strive to change the electron beam helicity without changing

other beam characteristics, this experiment aims to change the beam orbit without

causing other effects. This approach aims to isolate the effect of the beam orbit per-

turbation on the beam polarization in the arc. It ensures that the beam position at

the polarimeter target, for instance, is not correlated to the arc orbit effects. Com-

missioning tests demonstrated that while perturbing the reference orbit amplitude by

as much as ±8 mm, the correlated motion at the polarimeter target could be kept

below ∆x = 250 µm and ∆y = 150 µm. Estimates of the effect of position motion at

the polarimeter target are more fully discussed in Chapter 4.

The polarization effect is predicted to scale linearly with the perturbed orbit am-

plitude. This is because the mid–plane magnetic field of the quadrupole magnets

in the arc grows linearly with displacement from the magnet center. Therefore, the

orbit perturbation used is of variable amplitude to study this prediction. The max-

imum orbit amplitude is limited by the inner wall of the beampipe diameter. The

narrowest apertures occur at the quadrupoles where the beampipe inner diameter is

7
8

′′
. The locations of the deflecting magnets and their field strengths should be capa-

ble of reaching this limit. Again, the perturbation of the reference orbit should only

affect the vertical beam orbit. This is to say, the difference of the horizontal orbits

between perturbations should be zero. This assures that the quadrupole fields are

being sampled by the electron beam in the same vertical plane at each quadrupole

for both orbit perturbations.
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3.4.3 Orbit Calculations and Magnetic Field Requirements

To establish an orbit different than the reference orbit requires beam deflections.

As pointed out in Chapter 2 the solution of betatron motion is oscillatory. The

deflections of the beam orbit by magnets are simply initial conditions for this motion.

To determine the beam orbit in one plane at some location (position and angle)

requires two deflections. Therefore, to choose the amplitude and the slope of the

beam orbit at the center of the arc and to remove the orbit motion at the end of the

arc requires a total of four deflection magnets. A diagram of the arc and relevant

locations are shown in Figure 3.24. The first condition requires that the orbit at

From North Linac Spreader

To South Linac Recombiner

A - MCJ7E03V B - MCK7A02V

D - MCK7R04VE - MCL7R06V

C - Arc Center

Reference Orbit

X

Z

X

Z

Figure 3.24: Layout of recirculation arc 7 indicating the locations and names of the
vertical deflecting magnets used to perturb the nominal (reference) beam orbit.

location C have some some amplitude yc = ±ymax and be flat, y′
c = 0. This ensures

a symmetrical beam orbit about the center of the arc. The value of ymax is arbitrary

and scales the amplitude of the perturbed orbit oscillation. The second condition
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requires that the orbit exiting the arc be the reference orbit (ye = y′
e = 0).

Using the matrix formalism for linear optics transport [Car92], and assuming the

horizontal and vertical beam motion is uncoupled, the relation between the initial

and final beam coordinates (x, x′, y, y′) can be written as

x

x′

y

y′


f

=



M11 M12 0 0

M21 M22 0 0

0 0 M33 M34

0 0 M43 M44


i→f



x0

x′
0

y0

y′
0


i

.

The Mij are matrix elements which describe how the initial beam coordinates trans-

late to the final position and angle of the beam. These matrix elements are de-

termined from the nominal machine accelerator model as defined for dimad. The

notation i → f is used and means the cumulative effect between locations i and f

in the lattice. For example, MB→C
34 means the matrix element connecting the initial

beam angle at location B (y′
B) with the final beam position at location C (yC).

To meet the first boundary condition at location C (assuming yA = y′
A = 0) the

deflections at locations A and B are

y′
A−kick = ±ymaxM

B→C
44

∆

y′
B−kick = ∓ymaxM

A→C
44

∆
, (3.29)

where ∆ = (MA→C
34 MB→C

44 −MB→C
34 MA→C

44 ). To meet the second boundary condition

at location E the deflections at locations D and E are

y′
D−kick = ∓ymaxM

C→E
33

MD→E
34

(3.30)

y′
E−kick = ∓ymaxM

C→E
43 ± ymax

MD→E
44 MC→E

33

MD→E
34

. (3.31)

Once the angle y′ is determined at each of the four deflection locations the mag-

netic field strength required to produce that deflection for a beam of momentum p0

can be calculated as ∫
Bdl =

2p0

e
sin

(
y′

2

)
, (3.32)
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where e is the electronic charge. The recirculation arc energy proposed for this exper-

iment was nominally 2.845 GeV, therefore the magnetic correction strength (
∫

Bdl)

is calculated to be

∫
Bdl =

2 × 2845 MeV
c

e
sin

(
y′

2

) (
1 T m

299.79MV
c

) (
103 kG cm

1 T m

)

= 1.898 × 104 · sin (y′

2
) kG cm. (3.33)

3.5 Deflection Magnets

The deflection magnets are required to produce, and subsequently remove, vertical

orbit perturbations (betatron oscillations). The magnets must be capable of produc-

ing enough deflecting field strength, be reproducible, driven to their setpoints rapidly,

and locatable in the beamline. Two of the four magnets are at locations routinely re-

quired by accelerator operations and must be capable of operating at deflections 15%

greater than planned for this experiment. The criteria for selecting an air–core mag-

net design is presented in Section 3.5.1. The magnet modeling and design is described

in Section 3.5.2. Fabrication and bench testing is described in Section 3.5.3 and Sec-

tion 3.5.4, respectively. Finally, the magnet installation and controls are discussed in

Section 3.5.5.

3.5.1 Air–Core Versus Iron–Core

An iron–core magnet is one with an iron return yoke to confine and strengthen the

magnetic field of an electromagnet (magnetic field produced from a current in a coil

of wire). Existing iron–core magnets in acceptable locations of the recirculation arc

produce the required field strength and reproducibility. However, at the inception

of this experiment it was considered advantageous to change the beam orbit, and

magnet currents, at rates of 10 Hz. This can be accomplished, for instance, with
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iron laminate type magnets, but not with the solid iron type magnets that exist in

the accelerator. The inductive load, L, of the solid iron magnet geometry and coil

inductance, combined with the resistive load, R, of the coil and electrical connections,

limit the frequency response (τrise =
√

L/R) of the magnet. The magnetic hysteresis

of the iron also complicates the process for selecting magnet setpoints rapidly.

The alternative approach was to construct an air–core magnet; a magnet without

an iron return yoke. The frequency response of an air–core magnet is limited by the

inductance and resistance of the coil. Coils of this geometry typically have an induc-

tance of order 10 mH and a resistance of order 1 Ohm. Consequently, τrise ∼ 100 ms is

expected. Indeed, risetimes of about 100 ms were reproducible during bench testing.

This is adequate for the orbit reversal rate finally selected for the experiment (once

every 120 sec). The requirements to generate the required field strength (without

iron), good magnetic uniformity over the beampipe aperture (low harmonic content),

and a compact size to be located on the beamline were the driving factors in the final

design.

3.5.2 Modeling

The prototype is based on a style of magnet used at various locations in the accelerator

for correcting the beam orbit. The magnet is composed of two identical coils which

are mounted symmetrically on either side of the beampipe. The two coils are powered

in series to form a dipole field. A useful design model for the magnet is made from

four wires spaced symmetrically around the beampipe as depicted in Figure 3.25. The

model assumes longitudinal symmetry and neglects the end field effects of the coil.

If the two coils are driven in series by a single power supply the current in each

of the design model wires is identical, and the field at the axis (x = y = 0) is simply

given by

�B(axis) =
∑

i=4wires

�Bi(�ri)
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Figure 3.25: A four wire design model is used to estimate the magnet design param-
eters. The circle (cross) in each wire means the current is directed out of (into) the
page.

=
4µ0Itot

2π
· sin φ

R
x̂, (3.34)

where µ0 is the magnetic permeability of free space, Itot = Ni, N is the number of

turns of the coil and i is the current in the wire. φ and r, defined in Figure 3.25, set

the geometry and spacing of the coils. By symmetry By = Bz = 0. This model does

not consider the real distribution of the current in the coil package (coil diameter

< rcoil) and it neglects the end field of the magnet, however, it does provide a good

approximation for prototyping the magnet since the radial scale r is much less than

the magnet length.

The beamline is compactly loaded with accelerator components, beamline diag-

nostics and other magnets so available space is a scarce commodity. To accommodate

the space requirements and to reduce coupling of the magnetic field of the coils to

nearby iron elements the end–to–end magnet length, Lmag , was limited to 30 cm.

Beam optics simulations of recirculation arc 7 (Ebeam = 2.845 GeV) using dimad
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were performed to determine the magnetic field strengths at possible installation

locations for transporting large amplitude orbits without loss. The results indicate

the minimum required field strength at location A (2′′ beampipe) is ≈ 1000 Gauss cm

and at locations B, C, and D (1′′ beampipe) is ≈ 3300 Gauss cm. The first location

requires a smaller field strength than the remaining three because it is followed by a

large drift section (a large moment arm).

Magnets are often cooled to remove the heat load generated by the resistive heating

of the current–carrying wire. To simplify the design and installation, the magnet was

air cooled, rather than water cooled. The coil mass and material (copper) of the

approximate magnet design determine the maximum operating current. Without

additional cooling this magnet design operating in excess of 7 A would probably fail

as a result of the epoxy binding the wire into a coil form melting (≈ 250 ◦C). This

constrained the design magnet current (and field integral) to a safe threshold of ≤
5 A, producing ≈ 50% less resistive heating. The magnet constraints are summarized

in Table 3.1.

Points Available Space Beampipe OD (
∫

Bdl)min (Icoil)max

A 36.0 cm 2′′ 1000 G cm 5 A

B, D, E 36.7 cm 1′′ 3300 G cm 5 A

Table 3.1: The available beamline space, beampipe outer diameter (OD), minimum
required magnetic field strength, and maximum coil current for the magnet design.

A magnet can be characterized by a few useful parameters; (a) the maximum

magnetic field B0 chosen along a suitable axis; (b) the field integral along this axis

(
∫

B · dl)axis; and (c) the effective length defined by Leff =
(
∫

B·dl)axis

B0
. By measuring

the dipole field on the axis of a magnet of similar geometry to the one considered here

the ratio of the effective magnetic length to the total magnet length was determined

to be
Leff

Lmag
= 0.93. The effective length of the magnet being prototyped is then

Leff = 30 cm · 93% = 27.9 cm. The coil angle φ was chosen to be near 60◦ to provide
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the best uniformity of the dipole field. The half–gap g and half–width h spacing

was chosen to satisfy the beampipe diameter and coil angle. The number of turns

was chosen to be large enough to produce the required magnetic field strength at

currents less than 5 A. The effective length, beamline constraints, and allowing for

15% overhead in the required field strength, yield the magnet design requirements

listed in Table 3.2.

Characteristic 1′′ OD Magnet 2′′ OD Magnet

Magnet Length 30.0 cm 30.0 cm

Half-Gap, g 1.270 cm 1.829 cm

Half-Width, h 2.222 cm 3.175 cm

Coil Angle, φ 60.25 ◦ 60.06 ◦

Coil Turns, N 100 100

Table 3.2: The design values for deflection magnets as described in Figure 3.25.

3.5.3 Magnet Construction

The magnets were fabricated using the design values in Table 3.2 at the machine shop

at Jefferson Laboratory. The fabrication process involved the following five steps:

1. A winding fixture was designed and then fabricated to provide the tool on which

the magnet wire could be wound and formed into a coil.

2. For each of the two coil geometries 17 gauge kapton coated copper wire was

wound under tension to produce N = 100 turns in 10 layers as depicted in

Figure 3.26.

3. After the coil is wound on the fixture the ends of the coil are bent upward by

an amount 60 ± 2.5 ◦. This reduces the strength of the field near the edge of
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Figure 3.26: Simplified cross section of the fixture used to wind the magnet wire into
a coil. Each coil is wound to 10 layers with 10 turns of wire per layer.

the magnet where the harmonic content is larger. It also allows for the magnet

to straddle the beampipe at a closer radius. Bending the coil by more than 60 ◦

is mechanically difficult (the coil tends to deform) and was avoided.

4. The wound coil, still on the fixture, is dipped in a high temperature epoxy

(HYSOL) which is cured in an oven. Two views of the completed coil (2′′ OD

beampipe design) are shown in Figure 3.27.

Figure 3.27: Two views of a magnet coil prior to assembly. Two coils are used together
to create the dipole field for one magnet. Figure courtesy of D. Machie.
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5. Two coils are assembled by capturing both with a pair of mounts fabricated from

high density polyethylene to the beampipe to form the complete magnet. The

mounts capture the outer diameter of the beampipe and are clamped together

with tie wraps as shown in Figure 3.28.

Figure 3.28: View showing two clamp halves symmetrically capturing two magnet
coils to a 1” OD beampipe. Units are inches. Figure courtesy of D. Machie.

3.5.4 Bench Tests

Once fabricated each of the four magnets (three for 1′′ diameter beampipe and one

for 2′′ diameter beampipe) was assembled with a set of mounts on a stock piece

of beampipe as shown in Figure 3.29. Each was checked for continuity and proper
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Figure 3.29: Assembly drawing of a deflecting magnet mounted to a section of
beampipe. Figure courtesy of D. Machie.

wiring (a quadrupole field is created if the coils are mis–wired). The magnets are

designed to operate between ±5 A. The first test verified operation of the magnet

at 5 A while recording the coil surface temperature, and power supply current and

voltage, as a function of time. This determines the operational resistivity of the

coil. Plots of the coil surface temperature and resistivity are shown in Figure 3.30.

The linear dependence of the coil resistance with temperature is described by the

relationship [Ba78]

R = R1 [1 + α1(t − t1)] , (3.35)

where R1 = 2.22 Ω is the resistance at temperature T1 = 20 ◦ and R1·α1 = 0.0094 Ω/◦C;

both values are extracted from the average intercept and slope, respectively, of the

lower two plots. Consequently, α1 = 0.0043 /◦C, comparable to the handbook value

α1 = 0.0039 /◦C.
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Figure 3.30: Coil surface temperature versus time and the magnet resistance versus
coil temperature for the 1” (left) and 2” (right) OD magnets.

The next test involved measuring the transverse magnetic field along the axis of

the magnet. The magnet is mounted on a test stand and a Hall probe is stepped

along the beampipe axis in 0.5 cm increments. At each step the Hall probe location,

transverse magnetic field, and power supply current is recorded.

Two profiles, measured for different magnet currents, are shown in the upper plot

of Figure 3.31 for the 1′′ beampipe magnet. The measured profile is the contribution

of the Earth’s field plus the magnet field (which scales linearly with the power supply

current)

BMeas(x) = BEarth + i · BMagnet(x). (3.36)

The contribution from the Earth’s field can be determined and subtracted if this

magnet profile is measured for two power supply currents, i1 and i2,

BEarth =
i2B1 − i1B2

i2 − i1
. (3.37)
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Figure 3.31: The measured dipole field profile along the 1” OD magnet is shown in
the upper plot for (a) 1.0 Amp and (b) 0.1 Amp. The contribution of the Earth’s
magnetic field to the magnet profiles is shown in the lower plot.

The result is shown in the lower plot of Figure 3.31. A fit of the Earth’s field along

the measurement length yields BEarth = 0.246 Gauss + 6.46 × 10−4 Gauss
cm

· z. The

small slope is likely due to a mis–alignment between the Hall Probe path between

measurements. The semi–discreet fluctuation in the data is likely attributed to the

resolution of the probe used for the measurement. Using the value at the center

of the magnet BEarth = 298 mG. The profile for the 2′′ beampipe magnet was also

measured. A comparison of profiles for both magnets operating with a power supply

current of 1 A is shown in Figure 3.32. Finally, the characteristic magnet parameters

are determined from the field profiles. The maximum magnetic field along the central

portion of the magnet axis, (B0)axis, is determined from the profile. The strength of

the magnet, (
∫

Bdl)axis, is determined by summing over the profile,
∑

Bi∆xi. The

effective length, Leff , is determined from the ratio of the strength to the maximum
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Figure 3.32: Transverse magnetic field profile on the axis of the 1′′ (plus symbol) and
2′′ (diamond symbol) OD magnets. Each magnet is powered by i = 1 Amp for this
plot.

field. A comparison between the modeled and measured magnet parameters is shown

in Table 3.3.

Characteristic 1′′OD 1′′OD 2′′ OD 2′′OD

Design Measured Design Measured

(B0)axis (G/A) 27.3 28.4 ± 0.1 18.8 19.3 ± 0.1

Leff (cm) 27.9 28.0 ± 3.0 27.9 26.3 ± 0.1∫
(Bdl)axis (Gcm/A) 761.7 795.0 ± 3.0 524.5 508.1 ± 3.0

Table 3.3: Comparison of modeled and measured characteristic magnet parameters
for the 1′′ and 2′′ OD magnets.
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3.5.5 Magnet Installation and Control

To install the four magnets at the desired beamline locations, existing iron–core mag-

nets were removed and the new air–core magnets were mounted. They were mounted

to the beampipe using pairs of high density polyethylene disks cut to capture the

magnet coils to the beampipe. The magnets are oriented so their dipole field is

horizontal. Mounting the coils proved difficult because of flexing of the semi–hard

polyethylene mounts. Shims were used to square the coil pairs. Their final arrange-

ment was measured and all coils were oriented with a precision of 0.5 ◦ respect to

plumb. Each magnet is powered by a DC power supply (with a ±5 A limit) which

can be controlled either remotely through accelerator software controls (EPICS) or

locally by a voltage source a shown in Figure 3.33.

Software (EPICS) POWER SUPPLY
+/- 5 Amp Limit

Hardware
(Local Voltage Source)

COIL-1

COIL-2

+ -

COILS ARE WIRED IN SERIES

BEAMPIPE

BEAM

Figure 3.33: The magnet coils are powered by a ±5 A power supply. The power
supply is remotely controlled during the experiment to deflect the orbit of the beam
in the beampipe.

3.6 Hall C Møller Polarimeter

A Møller polarimeter is used in this experiment to measure the resultant effects of

the beam orbit on the beam polarization. The polarimeter is located 40 m upstream
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of the target pivot in experimental Hall C. Møller polarimetry is based on the scat-

tering of two polarized electrons (�e + �e → e + e). A scattering asymmetry results

from the spin–spin interaction of an incident polarized electron in the beam with

a polarized target electron in a magnetized target foil. The Møller cross section is

described in Section 3.6.1. A description of the target, spectrometer, and detectors

is given in Section 3.6.2. The detector signal and data acquisition electronics are

discussed in Section 3.6.3, and the interpretation of the polarimeter data and discus-

sion of important parameters for determining the beam polarization is described in

Section 3.6.4.

3.6.1 Physics and Analyzing Power

The cross section for Møller scattering is given by

dσ

dΩ
=

dσo

dΩ
(1 +

∑
ij∈x,y,z

AijP
B
i P T

j ), (3.38)

where P B
i (P T

j ) are components of the beam (target) polarization. Aij are the analyz-

ing powers which depend on the incident electron energy and scattering angle. dσo

dΩ
is

the unpolarized cross section. dσo

dΩ
and the Aij can be written [Wa86] in center–of–mass

frame quantities (denoted by the overbar symbol) of the reaction as

dσo

dΩ
=

(
r0

2 · γ · (γ2 − 1) · sin2 θ

)2

· a0 ·
1

100

Axx = − sin2 θ ·
(
(2γ2 − 1) + (γ4 − 1) · sin2 θ

)
/a0

Ayy = − sin2 θ ·
(
(4γ2 − 3) − (γ2 − 1)

2 · sin2 θ
)

/a0

Azz = − sin2 θ ·
(
(2γ2 − 1) · (4γ4 − 3) − (γ4 − 1) · sin2 θ

)
/a0

Axz = Azx = 2 sin2 θ · γ · (γ2 − 1) · sin θ · cos θ/a0

Axy = Ayx = Ayz = Azy = 0. (3.39)

E0 is the kinetic energy (in MeV) of the incident electron, me = 0.510999 MeV is the

electron rest mass, θ is the center–of–mass scattering angle of the Møller electrons,
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γ =
√

(E0 + me)/2me, a0 = (2γ2 − 1)
2 · (4 − 3 sin2 θ) + (γ2 − 1)

2 · (4 + sin2 θ) sin2 θ,

r0 = 2.818 fermi is the classical electron radius, and 1
100

is a conversion factor from fm2

to barn. At ultra–relativistic energies (γ � 1) the differential cross section becomes

dσ0

dΩ
→

(
r0

2 · γ · 4 − sin2 θ

sin θ

)2

, (3.40)

and the analyzing powers become essentially energy independent,

Axx → − sin4 θ

(4 − sin2 θ)

Ayy → −Axx

Azz → −sin2 θ · (8 − sin2 θ)

(4 − sin2 θ)
2

Axz → 0. (3.41)

A plot of the non–zero analyzing powers are shown in Figure 3.34. All are largest at

θ = 90◦ and the maximum is Azz = −7
9
.

Figure 3.34: Analyzing power for Axx, Ayy, and Azz at ultra–relativistic energies
(overlineγ � 1) as a function of center–of–mass scattering angle θ .
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The polarimeter used for this experiment uses a target which is polarized along the

beam direction (ẑ) and therefore the only component of beam polarization which is

measurable in this high–energy limit is PB
z corresponding to the maximum analyzing

power Azz. Therefore the cross section to consider is

dσ

dΩ
=

dσo

dΩ
(1 + AzzP

B
z P T

z ), (3.42)

where Azz is the average analyzing power of the polarimeter. By switching the helicity

of the polarization at the injector the sign of PB
z will change at the polarimeter. The

coincidence rate changes by an amount 2AzzP
B
z P T

z between the two helicity states.

Using Equation 2.26 the experimental asymmetry is written in terms of the measured

coincidence rates in each of the two helicity states, R↑↑ and R↑↓, as

εexp =
R↑↑ − R↑↓

R↑↑ + R↑↓
= AzzP

B
z P T

z . (3.43)

3.6.2 Design and Layout

A layout of the polarimeter is shown in Figure 3.35. The polarimeter consists of a

chamber in which a target foil can be magnetized to saturation in a uniform magnetic

field provided by a pair of superconducting Helmholtz coils. Downstream of the target

1.0m 7.85m

Helmholtz

collimator

Q1

beam

detectors

Q2

3.20m

target

Figure 3.35: Layout of the Hall C Møller polarimeter. A superconducting Helmholtz
coil configuration polarizes a target foil into saturation. Quadrupoles Q1, Q2, and the
detector collimator defines the acceptance of the detectors for measuring the incident
and scattered electron in coincidence. Figure courtesy of B. Zihlmann.

location are two quadrupoles separated by a collimation chamber. The quadrupoles
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form a magnetic spectrometer for an incident beam energy range of 2 − 6 GeV (Møller

electrons are in the range 1 − 3 GeV). The quadrupole field strengths are adjusted

to maintain a constant acceptance for 90 ◦ center–of–mass scattered Møller electrons

over this energy range. The optimized setpoints of the quadrupole currents are shown

in Figure 3.36. The collimation chamber shown in Figure 3.37 is composed of seven

Densimet (tungsten alloy) blocks which can be remotely positioned with actuators.

The central block (bored to pass the primary beam to the beam dump) and the two

downstream inner blocks mainly reduce detector counts due to multiple-scattering

beam growth and forward angle bremsstrahlung radiation resulting from the target.

The upstream outer blocks cut off the large angle elastic Mott background where the

cross section is larger than Møller scattering. The quadrupole optics and a collimator

in front of the detector stacks define the acceptance of the polarimeter. Finally, there

are two symmetrical electron detector stacks located in the horizontal scattering plane.

3.6.3 Detecting the Møller Coincidence Signal

A detector stack is depicted in Figure 3.38. The first element is a 16–channel scintilla-

tion counter hodoscope for measuring the horizontal position of the scattered Møller

electrons. The hodoscope data is used to optimize the tuning of the polarimeter by

locating the 90◦ center of mass Møller pairs to the center of the detector acceptance.

The hodoscope is followed by a defining aperture before a total absorption lead glass

counter to detect electron events. A Møller event is formed by triggering on a timing

coincidence between signals from the left and right lead glass detectors. The acci-

dental background is also measured. This is accomplished by forming a coincidence

in exactly the same way, but with one of the detector signals delayed outside of the

nominal coincidence.

At a pre–scaled rate (sampled rate of the Møller coincidences) of ∼100 Hz, ho-

doscope events, the lead glass signal, and coincidence timing signal are recorded by

an ADC and time–to–digital converter (TDC) to provide diagnostic pulse height spec-
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Figure 3.36: Quadrupole magnet setpoints for Q1 and Q2 which maintain a constant
acceptance for the center–of–mass scattered electrons in the energy range between 2
and 6 GeV. Figure courtesy of B. Zihlmann.

tra. The Møller coincidence event signal, accidental event signal, a signal proportional

to the beam current and a 100 MHz clock signal are recorded in two banks of scalers.

Each bank is gated with the helicity of the beam in a mutually exclusive way. The
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Figure 3.37: The collimator is a set of seven tungsten–alloy blocks which are mounted
on linear actuators. The central block is bored to allow the non–interacting beam
to pass to a beam dump. The others are paired symmetrically as shown. Figure
courtesy of B. Zihlmann.

photo multiplier

electron

photo multipliers
array of collimator shower

plastic hodoscope
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total absorption detector
lead glass 

Figure 3.38: One of the two Møller detectors stacks showing the horizontal position
sensitive hodoscopes, collimator, lead glass detector, and PMT. Figure courtesy of B.
Zihlmann.

experimental asymmetry, εexp, is determined from the scaler data. A schematic of the

data acquisition electronics is shown in Figure 3.39. For the experiment conditions
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Figure 3.39: Møller polarimeter electronics diagram.

(EMoller ≈ 3.4 GeV, ibeam ≤ 3.5 µA, target thickness = 4 µm) the Møller coincidence

rate was ≈ 30 kHz. A statistical uncertainty of ≈ 6 × 10−5 is acquired in a 2 hour

measurement of the beam polarization.

3.6.4 Interpreting the Polarimeter Results

The first check of the polarimeter is that the quadrupole spectrometer is optimized.

A good hodoscope hit distribution is shown in Figure 3.40. The figure shows the

hit pattern of the left hodoscope versus right hodoscope channels for coincidences.

In this case, the events are centered about θ = 90 ◦ and should have a symmetrical

angular distribution to the detectors.

The coincidence time–of–flight (TOF) and full energy lead glass pulse height spec-

tra are shown in Figure 3.41. The TOF shows good accidental rejection with a signal

to background of 1000:1. The energy spectrum (cut on coincidences) shows a clean

energy distribution in the center–of–mass scattering. These diagnostics are used to
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Figure 3.40: Left hodoscope events plotted against right hodoscope events for good
optics setup for polarimeter. The size of the squares is proportional to the number
of coincidence events recorded at the hodoscope elements indicated. Figure courtesy
of B. Zihlmann.

prepare the polarimeter for operation. Once the polarimeter tuning was accomplished

the measurement of the beam polarization commenced.

Recall from Equation 3.43 that the measured beam polarization is determined

from

P B
z =

1

AzzP T
z

· εexp. (3.44)

The uncertainty in the polarization is given by

δP B
z

P B
z

=

√√√√√(
δε

ε

)2

stat

+

(
δAzz

Azz

)2

syst

+

(
δP T

z

P T
z

)2

syst

. (3.45)
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Figure 3.41: Time–of–flight energy pulse height energy spectra for Hall C Møller
polarimeter. The ordinate in both plots is the number of recorded Møller events.
Figure courtesy of B. Zihlmann.

An absolute measurement of the beam polarization requires good absolute knowledge

of both Azz and P T
z . This experiment measures a relative difference in the beam

polarization. Therefore, a good measurement of the beam polarization is useful.

However, absolute knowledge of the analyzing power and the target polarization is less

important. It is necessary, however, that the analyzing power and target polarization

do not depend upon the beam orbit. The level to which this is true is discussed

further in Chapter 4.
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3.7 Accelerator Operation

Feedback systems are typically used when sending beam through the accelerator to

maintain beam parameters stable within limits. Feedback systems were used during

the experiment to maintain beam delivery and reduce systematic beam orbit and

energy related noise. These are described in Section 3.7.1. The extraction of the

beam to the Hall C polarimeter is described in Section 3.7.2.

3.7.1 Orbit, Energy, and Master Oscillator Feedback

Orbit locks are a system for maintaining a consistent orbit through the recirculation

arcs [Pa99]. When the accelerator is first setup the beam is launched into each

recirculation arc with conditions that best match the reference orbit (x = y = x′ =

y′ = 0). The recirculation arc optics are then tuned for good transmission to the next

linac. Once the orbit locks are running a pair of correction magnets in each transverse

direction (spaced ≈ 90◦ apart in betatron phase) are modulated to maintain the orbit.

The feedback time for this process is about 5 seconds.

Energy locks are a system for maintaining the absolute energy setup of the acceler-

ator. When the accelerator is first setup the recirculation arc optics are set specifically

for an operating energy and a dispersion pattern. A dispersion pattern means the set

of beam position readings which depend upon the energy of the beam. When these

locks are running groups of beam position monitors sample and compare the orbit

with a model of the accelerator. If the absolute energy begins to differ from nominal

the dispersion pattern will change in all arcs. The gradients of RF acceleration cav-

ities in the end of each linac are then adjusted to restore the dispersion pattern as

determined by the model. The feedback time for this process is about 5 seconds.

The Master Oscillator Modulation Feedback [Ti99] is a system for maintaining the

beam bunches on the crest of the linac RF. This feedback system is fast and modulates

the phase of all of the RF cavities in the north (south) linac by 0.07 ◦(0.05 ◦) at a rate

of 383 Hz (397 Hz). The amplitude of this modulation is measured in a high dispersion
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region of the subsequent spreader magnet system with a beam position monitor. The

system has a resolution adequate enough to measure the RF phase difference between

the crest of the accelerating field and the beam bunches (0.3 ◦). The system can then

adjust and maintain the overall RF accelerating phase of the linac.

3.7.2 Beam Separation to Experimental Halls

This experiment involved extracting the perturbed beam to the Hall C transport arc

after four complete recirculations of the accelerator . Concurrent with this experiment

another was performed in the Hall B experimental area using a beam of only three

recirculations of the accelerator. The Hall A experimental area was unused for this

period. To accomplish this configuration only two of the three 1497 MHz electron

bunches were produced at the electron gun (by two of the three lasers). Following

three complete recirculations of the accelerator, one of those two electron bunches was

deflected out of the accelerator by an RF separator operating at the third subharmonic

of the accelerator (499 MHz) to Hall B. The remaining electron bunch, spaced by

499 MHz in the accelerator, continued for a fourth full recirculation to transit the

orbit perturbation in arc 7. Since all of the remaining beam in the accelerator at this

point was destined for Hall C, the extraction of the beam was accomplished with a

DC magnet, rather than by RF separation. For measurement of the beam energy the

transport arc optics for Hall C were set to a dispersive mode.

3.8 Beam Controls and Data Acquisition

The beam controls and accelerator data acquisition is managed by the Orbit Run Con-

trol (ORC) program written in Tcl/Tix [Ou90] explicitly for this experiment. The

ORC communicates to the high level Experimental Physics and Industrial Control

(EPICS) [LANL] accelerator controls through the common device interface cdev [Cd99].

The ORC controls the beam orbit modulation in arc 7, the laser power level (beam

current), data acquisition of accelerator parameters, and provides (through a hard-
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ware interface) real–time orbit signals for the polarimeter data acquisition system.

After setting the spin rotators and determining the magnet setpoints for an orbit

perturbation, the ORC handles the run control. This run sequence is described in

Section 3.8.1. The timing diagram for the controls of the beam helicity, beam orbit,

and polarimeter data acquisition is given in Section 3.8.2.

The ORC logs accelerator data to disk using the program ezlog [La]. Depending

upon the conditions, between 1000 and 4000 accelerator parameters are recorded at

rates between 0.2 Hz and 5 Hz. Log files are compressed and saved for off–line analysis.

3.8.1 Sequence of Run

Each measurement is performed in the same sequence. Refer to Figure 3.42 for the

communications diagrams of the sub–systems used in the experiment. First, the Wien

INJECTOR RECIRCULATION ARC 7 HALL C MOLLER
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Timing
Source

Moller Run
Control and
DAQ
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Pockels
Cell

Electron
Gun
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Rotators

Injector
Steering

ORBIT RUN CONTROL

Add
Error

Remove
Error

BPM
Data

Injector Magnets Mott DAQ

Mott Polarimeter
D1

D2

Orbit Gates
to Moller

Laser Modulation Control

Helicity Control by Optical Fiber

Orbit Gates by Optical Fiber

Deflecting
Magnets

Deflecting
Magnets

Figure 3.42: Schematic showing software (dotted line) and hardware (solid line) con-
trol flow between subsystems of the experiment.

filter and solenoid spin rotator setpoints are adjusted for the specific run conditions.

The beam is then steered to minimize transmission loss through the injector and

finally sent to the Mott polarimeter to verify the polarization orientation. Next the
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beam is transported through the machine to the Møller polarimeter. With the beam

in a tune-up mode the magnet setpoints for the two beam orbits to be studied are

determined. The high duty factor (CW) beam is restored and the orbit flipping

sequence is started to verify good transmission for each of the two orbits. Once

checked the ORC program and orbit reversal are started. The polarimeter data

acquisition is initiated. Polarimeter runs are typically 20 min in duration and are

run successively until adequate statistics are gathered. On-line analysis verifies the

quality of the polarimeter data.

3.8.2 Helicity and Orbit Reversal

A timing diagram of the helicity and orbit reversal, and beam and polarimeter gating

is shown in Figure 3.43. The beam orbit is changed every 120 seconds. To reverse the

Pseudo-Random HELICITY @ 1Hz

Orbit B Valid Orbit A Valid

Beam Current ~ 3uA Beam Current ~3uA

Orbit A Valid

Corrector Magnets Are FixedMagnets Are Fixed

10 s 120 s 10 s 120 s

Current ~ 3uA

ORBIT A

ORBIT B

Current Gate

Magnet Trigger

(TIMELINE NOT TO SCALE)

Corrector Magnets Are Fixed

120 s

Figure 3.43: Timing scheme shows the beam helicity, orbit, and deflection magnet
signals. The hatched areas in the lower part of the figure indicate when the orbit is
invalid, the beam current is reduced, or the magnet currents are changing.

beam orbit the ORC first gates the polarimeter data acquisition (DAQ) off. A delay of

500 ms is followed by a control signal to ramp the orbit magnets between their present
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and target values. The ramping process is done in a quasi–synchronous manner,

stepping each magnet by 10% of the difference between present and final setpoints,

pausing for ≈ 900 ms between increments, until the target setpoints are reached.

A second delay of 500 ms is issued by the ORC before restoring the polarimeter

measurement gate. The ramping process takes 10 s and the measurement interval

lasts 120 s, totaling 130 s for a full orbit reversal. Therefore, the polarimeter DAQ is

accumulating events with an efficiency of 92%.

To measure the final beam polarization the helicity of the injected beam polar-

ization is regularly reversed, or flipped. Typically, the beam helicity at the injector

is flipped at 30 Hz, or a subharmonic of the 60 Hz line frequency, so that physical

beam properties which vary slowly compared with the flipping frequency are aver-

aged between helicity states. Also, 60 Hz variations are prominent, so 30 Hz flipping

averages over these effects. Because of the Pockels cell high voltage driver failure the

helicity was flipped at 1 Hz (clocked to the 60 Hz line frequency) for this experiment.

Systematics associated with flipping the helicity at this frequency do not present a

problem for the asymmetries measured in this experiment. The beam helicities are

chosen in random patterns of four (+ −−+ or − + +−) such that the average time

of measurement of each helicity state is the same [Be93].
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Chapter 4

Data Reduction Techniques and Analysis

The measurement of the beam polarization sensitivity to the beam orbit is performed

at the Hall C Møller polarimeter. However, to interpret the results knowledge of

the beam polarization, energy, and orbit in recirculation arc 7 are required. Fur-

ther, knowledge of the beam profile, position, and intensity at the polarimeter target

provide a means to study systematics of the polarimeter which may affect the mea-

surements.

Determining the beam polarization in arc 7 relies on a good measurement of

the injector polarization, which is discussed in Section 4.1. Measurements of the

beam energy performed during and prior to this experiment, necessary for calculating

the average linac energy, are discussed in Section 4.2. Systematics associated with

extracting the beam polarization orientation and orbit in arc 7, and systematics of the

Møller measurement as a function of beam parameters, are discussed in Section 4.3.

Finally, the polarization sensitivity results are presented in Section 4.4 in comparison

to simulations using the spin tracking program murtle spin22.

4.1 Injector Polarization Determination

Knowledge of the beam polarization vector at the injector is necessary to extract

three meaningful results for this experiment. First, by comparing the polarization

vector measured at the Møller polarimeter with that produced at the injector, the
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average linac energy can be extracted to a few parts in 103. The average linac energy

is used for spin tracking simulations. Second, the sensitivity of the beam polarization

to vertical betatron oscillations in the recirculation arc is predicted to scale linearly

with the vertical component of the beam polarization, ∼ sin(θ) sin(φ). This results

because the interaction is expected to scale according to the factor Py × Bx, where

Py is the horizontal component of the beam polarization and Bx is the horizontal

component of the quadrupole magnetic field (vertically focusing). Accurate knowledge

of the injector polarization vector is necessary to determine the angular dependence

of this effect. Finally, sign discrepancies are a classic source of error in polarization

experiments so verifying the sign of the beam polarization is important.

The spatial orientation (axis) and helicity (sign) of the beam polarization vector

is set at the injector. The calibration of the electron beam helicity to the control elec-

tronics, which sets the Pockels cell optical helicity, is described in Section 4.1.1. The

beam polarization orientations for the experiment are calculated using the calibration

data and magnet current readbacks for the injector spin rotators. A comparison of

the beam polarization as measured by the Mott polarimeter with the spin rotator

settings is made in Section 4.1.2.

4.1.1 Determining the Beam Helicity

The correlation between the electron beam helicity and the electronics which trigger

the Pockels cell high voltage was determined at the start of the experiment. This

was accomplished by comparing the Mott scattering asymmetry between two sym-

metrical detectors. The measurement is done for a known Wien filter spin rotator

setpoint. The difference in the detector rates, uniquely determined by the kinematics

of the scattering and polarimeter design, determine the beam helicity. The polarized

beam and the Mott polarimeter configuration is shown in Figure 4.1 for the case

θWien = +90◦. At the beginning of the experiment it was not known whether the sign

convention for the helicity control electronics resulted in a positive or negative helicity
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Figure 4.1: Schematic for the Mott scattering geometry and location of the up and
down detectors used to determine the beam helicity.

electron beam from the gun. To determine the convention we make the assumption

that the helicity of the beam is positive for one of the two states of the control elec-

tronics (�PGun = +P0ẑ). In this case, �PMott · x̂ < 0 and the Mott elastic rate in the up

detector is expected to be less than that in the down detector (σup < σdown). If the

assumption in the convention was wrong, the inequality in the detector rates would

be reversed. The measurement was performed. Consequently, the helicity convention

was used to extract the sign of the polarization from the polarimeter data. Neither

the helicity generation electronics (logical trigger, Pockels cell, high voltage driver

electronics) nor the helicity signal communications (fiber optic or electrical cabling),

were modified during the course of the experiment.

4.1.2 Determining the Beam Polarization

Performing this experiment requires setting the beam polarization orientation for the

accelerator. A measurement of the beam polarization in the injector is useful, because

in all cases the polarization at the injector, recirculation arc 7, and Møller polarime-

ter are related. The rotations of the spin manipulation system are calculated from
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the spin rotator calibration data and current readbacks. Recall the convention of

the coordinate system for describing the beam polarization orientation in Figure 2.1.

For each measurement (data set) two perturbed orbits with a common polarization

orientation (prior to arc 7) were studied. That orientation is therefore based on the

injector orientation. The desired orientations at recirculation arc 7 and the corre-

sponding injector spin rotator setpoints used to accomplish them for the 18 data sets

are shown in Table 4.1.

After preparing the spin rotators for a specific injector orientation, the beam po-

larization was measured at the Mott polarimeter. Using the spin rotator setpoints,

the polarization orientation expected at the polarimeter can be computed. The in-

jector magnets and spin rotators which precess the reference orbit polarization are

shown in Figure 4.2. The transport of the beam polarization to the Mott polarimeter

Wien
Filter Solenoid

Rotators

12.5 deg

5 MeV Dipole

Beam To Main
Accelerator

Injector
Acceleration
Cavities

(sets      )θ
(sets      )φ

Mott PolarimeterPolarized
Electron
Source 
(100 kV)

(PLAN VIEW)

Figure 4.2: A schematic indicating the spin rotation components in the CEBAF
injector between the polarized gun (producing a longitudinally polarized beam) and
either the Mott polarimeter or the accelerator proper.

can be written as the product of the individual polarization rotation matrices for the

90 ◦ dipole bend beneath the polarized gun, the Wien filter, the two solenoid rotators

S1 and S2, and the 12.5 ◦ dipole bend to the Mott polarimeter beamline. The spin

rotation due to each dipole magnet, Ψ, is given by g−2
2

γθbend, where g is the elec-

tron gyromagnetic factor, γ = E
mc2

is the total energy divided by the electron rest

mass, and θbend is the dipole bend angle. Consequently, the polarization at the Mott
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DATA Desired Arc 7 θWien φS1 φS2

SET Orientation (deg) (deg) (deg)

#1 [-147,+000] +31.28 ± 0.30 +1.43 ± 0.19 +0.97 ± 0.19

#2 [+090,+090]0:0 −87.56 ± 0.63 +50.07 ± 0.44 +37.87 ± 0.30

#3 [+090,+090]M:M −87.56 ± 0.63 +50.06 ± 0.44 +37.88 ± 0.30

#4 [+090,+090]M
2

:M
2

−87.56 ± 0.63 +50.06 ± 0.44 +37.88 ± 0.30

#5 [+090,+180]M:M −27.53 ± 0.29 +1.42 ± 0.19 +0.97 ± 0.19

#6 [+090,+135]M:M −50.58 ± 0.41 +50.06 ± 0.44 +16.02 ± 0.21

#7 [+090,+225]M:M −50.58 ± 0.41 −47.16 ± 0.44 −14.11 ± 0.21

#8 [+090,+090]M:M −89.39 ± 0.64 +50.06 ± 0.44 +37.87 ± 0.30

#9 [+045,+090]M:M −109.30 ± 0.76 +50.06 ± 0.44 +0.97 ± 0.19

#10 [+135,+180]M:M +17.60 ± 0.25 +1.43 ± 0.19 +0.97 ± 0.19

#11 [+045,+180]M:M −72.74 ± 0.54 +1.43 ± 0.19 +0.97 ± 0.19

#12 [+045,+270]M:M −109.26 ± 0.76 −47.16 ± 0.44 +0.98 ± 0.19

#13 [+090,+090]M:M −89.39 ± 0.64 +50.06 ± 0.44 +37.88 ± 0.30

#14 [+090,+090]M:0 −89.39 ± 0.64 +50.06 ± 0.44 +37.88 ± 0.30

#15 [+090,+090]0:M −89.39 ± 0.64 +50.06 ± 0.44 +37.88 ± 0.30

#16 [+090,+090]M
2

:M
2

−89.39 ± 0.64 +50.06 ± 0.44 +37.88 ± 0.30

#17 [+090,+090]0:0 −89.39 ± 0.64 +50.06 ± 0.44 +37.88 ± 0.30

#18 [+135,+180]M:M +17.60 ± 0.25 +1.44 ± 0.19 +0.98 ± 0.19

Table 4.1: Spin manipulator setpoints for the experiment. The desired orientation
is denoted by the prefix [θ,φ]A:B. (θ,φ) are the necessary spin rotator setpoints and
A:B determine whether orbit A or B is M (maximum), M/2 (half–maximum), or 0
(reference orbit).

polarimeter, �PMott, is related to the polarization at the electron gun, �PGun, by

�PMott = Ry(Ψ12.5◦) · Rz(φS1 + φS2) · Ry(θWien) · Rx(Ψ90◦) · �PGun, (4.1)

where Ri(θ), i ∈ x, y, z, represents a rotation about the ith coordinate axis by an
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angle θ.

The beam polarization was verified at the Mott polarimeter following each spin

rotator adjustment. Because the polarimeter measures the two transverse components

of the beam polarization, the azimuthal rotation angle can be computed directly from

the measured experimental asymmetry

φmeas = arctan
(

εy

εx

)
, (4.2)

and then compared with the expected orientation calculated using the spin rotator

calibration data

φcalc = arctan

 �PMott · ŷ
�PMott · x̂

 . (4.3)

A comparison of the two is shown in Figure 4.3, indicating generally good agreement.

The uncertainties in the plot result from the uncertainty of the spin rotator setpoint

(systematic uncertainty) and the uncertainty of the rotation angle determined from

the Mott polarimeter (statistical uncertainty).

4.2 Beam Energy Measurements

The motion of the electron spin in electromagnetic fields depends linearly on the elec-

tron energy. The acceleration boosts received by the electrons from the electrostatic

field of the electron gun (100 keV), and the injector and linac RF acceleration cavities,

determine the beam energy. Consequently, knowledge of the beam energy is required

to describe the beam polarization evolution through the accelerator. The average

linac energy Elinac is a useful parameter for this characterization. Extraction of the

average linac energy from beam energy measurements is covered in Section 4.2.1.

The measurement of the beam energy using the Hall C transport line as a mag-

netic spectrometer is described in Section 4.2.2. Alternatively, extraction of the beam

energy by measuring the net spin precession in the accelerator is discussed in Sec-

tion 4.2.3. A series of beam energy measurement techniques, which include spin pre-

cession, elastic electron–proton scattering, and magnetic spectrometer measurements
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Figure 4.3: The upper plot (A) shows the desired azimuthal orientation expected
at the Mott polarimeter for each data set. The lower plot (B) shows the difference
between the expected and measured orientation.

are described in Section 4.2.4. Finally, a measurement of the momentum spread of

the beam is discussed in Section 4.2.6.

4.2.1 Calculation of Average Linac Energy Gain, Elinac

It is a fair approximation to assume that the North and South linac gains, ENorth

and ESouth, are equal (at most ∼ 10−3 different) and that the injector gain, EInjector,

is scaled to the linac gain for pre–acceleration by a ratio α =
EInjector

ELinac
= 0.1125. This

condition is required for matching the momenta of different energy beams during

recirculation in the spreader/recombiner geometries. Restating these conditions

ELinac = ENorth = ESouth
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EInjector = 0.1125 · ELinac, (4.4)

the energy for n passes of recirculation, En−Pass, is

En−Pass = EInjector + n · ENorth + n · ESouth

= α · ELinac + n · ELinac + n · ELinac

= (α + 2n)ELinac. (4.5)

The average linac energy for a n–pass energy measurement is given as

ELinac =
EMeasured

(α + 2n)
. (4.6)

The error in the extracted linac energy is simply given by

∆ELinac =
∆EMeasured

(α + 2n)
. (4.7)

4.2.2 Method 1: Hall C Arc Energy Measurement

The transport arc shown in Figure 4.4 is a 41.6 m section of beamline consisting of 8

dipoles, 12 quadrupoles, and 8 pairs of correction magnets (horizontal and vertical)

which transport the beam from the accelerator to the experimental end station. The

deflection angle of the arc is 34.3 ◦.

A technique is described [Ya95, Gu99] for measuring the beam momentum p by

using the transport arc as a magnetic spectrometer. The beam momentum is deter-

mined by

p =
e

Θ

∫
Bdl, (4.8)

where
∫

Bdl is the magnetic field integral over the path of the electron beam and Θ

is the bending angle through which the electron beam is deflected. The beam energy

is then given by E =
√

(pc)2 + (mec2)2; for cases where me

p
� 1, E ≈ pc.

This energy measurement technique requires de-energizing all of the periodic fo-

cusing elements (quadrupoles) in the beamline, thereby leaving the arc in a dispersive

mode with only the dipole magnets energized. The 8 dipoles are powered in series
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Figure 4.4: Hall C transport arc. Figure courtesy of C. Yan.

by a single calibrated power supply. Each dipole is field-mapped and the correction

magnets are set to compensate the effect of the Earth’s remnant magnetic field.

By measuring the transverse beam profile at a pair of locations, separated by a

suitable distance, the beam centroid and direction can be determined. By performing

this measurement at the beginning and end of the transport arc the net deflection

angle of the beam is measured. This and the beam profile information provide the the

beam momentum (p), energy (E), and momentum spread (∆p
p

). To accomplish this

a pair of beam profile diagnostics called superharps are located at both the entrance

an exit of the arc. Each superharp is a wire scanner capable of measuring the beam

intensity profile as a function of position in two orthogonal directions transverse to

the beam momentum. The superharp contains a fork supporting a 22 µm diameter

tungsten wire that is moved through the beam as shown in the system schematic of

Figure 4.5. A secondary electron emission current due to the beam intercepting the

tungsten wire is recorded and correlated with the position of the moving wire. In this

way the horizontal and vertical beam profiles are measured. The motion of the wire

is monitored using an 18–bit absolute shaft encoder with 1.24 µm resolution. The

overall resolution of the superharp provides better than 10µm profile and position
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Figure 4.5: Diagram of the superharp beam profile measurement. Figure courtesy of
P. Gueye.

resolution. By using the superharps for reference in conjunction with the total field

integral for the dipole string used to bend the beam through the arc, absolute beam

energy measurements can be performed at the level of 10−3.

This system can be used with continuous (CW) beam currents between 0.1 − 30 µA.

However, because the measurement is destructive to the beam it cannot be performed

parasitically. Rather, a dedicated measurement was performed to determine the elec-

tron beam momentum. The results for the measurement are listed in Table 4.2. The

beam energy and average linac energy are calculated using Equations 4.8 and 4.6.
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Date Beam Momentum Beam Energy ELinac

MeV/c MeV MeV

March 6, 1999 3411.37 ± 0.85 3411.37 ± 0.85 420.51 ± 0.11

Table 4.2: Results of the Hall C arc energy measurement.

4.2.3 Method 2: Spin Precession Technique

As the electron beam propagates through the accelerator the polarization precesses

about the magnetic fields it encounters. The net polarization precession from the

nine recirculation arcs and transport arcs can be written

Ψ =
∑

bends

Ψi

= g−2
2me

· [(EI + EN )θ1]Arc1 + [(EI + EN + ES)θ2]Arc2 +

[(EI + 2EN + ES)θ1]Arc3 + [(EI + 2EN + 2ES)θ2]Arc4 +

[(EI + 3EN + 2ES)θ1]Arc5 + [(EI + 3EN + 3ES)θ2]Arc6 +

[(EI + 4EN + 3ES)θ1]Arc7 + [(EI + 4EN + 4ES)θ2]Arc8 +

[(EI + 5EN + 4ES)θ1]Arc9 + [(EI + 5EN + 4ES)θh]Hall. (4.9)

The precession for n passes of the accelerator is more compactly written as

Ψn = g−2
2me

∑
n [(EI + nEN + (n − 1)ES)θ1 +

((1 − δ1,n)EI + (n − 1)(EN + ES))θ2 +

(EI + n(EN + ES))θh], (4.10)

where δ1,n is the Kronecker delta. By performing the sum over n passes and making

use of Euler’s formula,
∑N

i=1 i = N(N+1)
2

, the sum can written

Ψn =
g − 2

2me
· (nθ1 + (n − 1)θ2)EI +

n

2
((n + 1)θ1 + (n − 1)θ2)EN

+
n(n − 1)

2
(θ1 + θ2)ES + (EI + n(EN + ES)θh) . (4.11)
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By making the transformations

E = EI + n(EN + ES)

δE = EN − ES

θt = nθ1 + (n − 1)θ2 + θh

δθ = θ1 − θ2, (4.12)

the total precession between the injector and an experimental hall is written in terms

of quantities which are sensible for describing the accelerator configuration. For exam-

ple, it is useful to speak of the beam energy, E, the imbalance in the linac energies, δE,

or the difference in the recirculation arc transport bend angle, δθ. Finally, the total

polarization precession through the accelerator from the injector to an experimental

hall is written as

Ψn =
g − 2

2me

[
EI

(
θt − θh

2

)
+ E

(
θt + θh

2

)
+

nδE

2(2n− 1)
(θt − θh + (n − 1)δθ)

]
.

(4.13)

The beam energy can then be extracted from measuring the total precession of the

polarization in the accelerator

E =

4meΨ
g−2

− EI(θt − θh) − nδE
2(2n−1)

[θt − θh + (n − 1)δθ]

θt − θh
. (4.14)

The uncertainty in this measurement includes the uncertainty in the accelerator pa-

rameters. The error terms from the beam energy measurement are determined by

taking appropriate derivatives

dE

dΨ
=

4me

g − 2
·
(

1

θt + θh

)
dE

dEI
= −θt − θh

θt + θh

dE

d(δθ)
= −n(n − 1)δE

2n − 1
·
(

1

θt + θh

)
dE

dθt
= [−E − EI −

nδE

2n − 1
] ·

(
1

θt + θh

)
dE

dθh
= [−E − EI −

nδE

2n − 1
] ·

(
1

θt + θh

)
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dE

d(δE)
= − n

2n − 1
[θt − θh + (n − 1)δθ] ·

(
1

θt + θh

)
. (4.15)

This experiment used a fourth pass (n = 4) to the Hall C Møller polarimeter. The

precession of the beam polarization in the accelerator is determined by comparing

the measured polarization at the injector Mott and Hall C Møller polarimeters. This

Møller polarimeter is only sensitive to the ẑ component of the beam polarization.

As the polarization is rotated to different orientations in the injector, θinj, the orien-

tation of the polarization will rotate at the experimental hall by the same amount.

The polarimeter then measures an experimental asymmetry which is proportional to

Ry(Ψn) · �Pinjector · ẑ, which varies as cos(θinjector + Ψn).

Although the measurable component of the polarization is in the accelerator bend

plane, 4 of the 7 data sets used to extract the precession are oriented out of the bend

plane. Consequently, to extract the precession the following method is used:

1. Calculate the orientation of the polarization vector, �P (θ, φ), at the injector

using the spin rotator setpoints. Next, calculate the projection of the beam

polarization into the bend plane to determine the corrected injector angle, θcor.

The spin rotator setpoints and the corrected injector angle, θcor, are given in

Table 4.3.

2. Compute the experimental asymmetry for the Møller runs for these data sets.

Because the polarimeter is only sensitive to the ẑ component of the beam po-

larization, the measured experimental asymmetries must also be corrected to

determine the bend plane phase angle. This is accomplished by dividing each

of the experimental asymmetries by the calculated opening angle between the

ŷ–axis and the beam polarization (as determined at the injector) to produce

the corrected experimental asymmetries.

3. The experimental Møller asymmetries are plotted as a function of the corrected

injector phase, θcor, and the data is fit using P0 cos(θcor + Ψn). This fit was

performed and the data and resultant curve are shown in Figure 4.6. The total
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Data θWien φS1+S2 θcor

Set (deg) (deg) (deg)

# 5 −27.53 ± .29 2.39 ± .27 1.10 ± .01

# 6 −50.58 ± .41 66.08 ± .49 44.92 ± .46

# 7 −50.58 ± .41 −61.27 ± .49 −42.64 ± .32

# 9 −109.30 ± .76 51.03 ± .45 47.20 ± .32

# 10 17.60 ± .25 2.40 ± .27 0.72 ± .01

# 11 −72.74 ± .54 2.40 ± .27 2.29 ± .01

# 12 −109.26 ± .76 −46.18 ± .48 −42.93 ± .37

Table 4.3: Spin rotator settings and corrected polarization phase for the component
of the beam polarization in the accelerator bend plane.

precession was determined from the fit to be Ψ4 = 329.2◦ ± 3.3◦fit ± 1.0◦sys.

The measured phase and error estimates listed in Table 4.4 are combined to determine

the beam energy at the Møller polarimeter. The beam energy determined by this

Description Quantity Value Error

Number of Passes n 4 0

Precession Angle Ψ 4649.20 ◦ 3.3 ◦

Wien Filter Angle θWien −110◦ < θ < +110◦ < 1.0 ◦

Injector Energy EInj 47.25 MeV 2.36 MeV

Linac Imbalance δE ≤ 0.5 MeV –

Arc Bend Angle θarc 180.00 ◦ 0.01 ◦

Hall Bend Angle θhall −37.52 ◦ 0.01 ◦

Table 4.4: Estimates of error in accelerator parameters for determining the beam
energy from the total polarization precession between the injector and Hall C at
n = 4 passes.
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Figure 4.6: Uncorrected and corrected polarization as measured by the Hall C Møller
polarimeter.

method is En=4 = (3407.23 ± 4.08) MeV. The uncertainty in the measurement is due

to the fit uncertainty of the total accelerator precession and uncertainties indicated

in Table 4.4 and computed using Equations 4.15. The average linac energy is then

computed to be Elinac = (420.00 ± 0.50) MeV.

4.2.4 Method 3: The “Energy Festival”

During the 2 days prior to this experiment a series of measurements, known as the

energy festival, were performed to determine the final beam energy in the three ex-

perimental halls. A complete discussion is given elsewhere [Mi99]. However, it is

useful to report the results for comparison. The beam energy was measured by

three distinct techniques. All techniques combined yield an average linac energy of

420.19 ± 0.39 MeV. A brief description for each of the measurement techniques of the
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beam energy is given:

1. Injector and End Station Spin Precession. The precession of the beam polariza-

tion is measured between polarimeters at different passes using the technique

described above.

2. Hall A Arc and Hall C Arc Energy Measurement. The Hall A and Hall C

experimental areas are located at the end of transport arc of definite bend

angle from the accelerator switchyard. With accurate knowledge of the total

the bending dipole field in the transport arc and the beam trajectory, the beam

momentum is measured.

3. Hall A Electron–Proton Scattering. This method determines the beam energy

by measuring the opening angle kinematics between a scattered electron and a

recoil proton. This measurement system is a part of standard Hall A hardware.

The detector is designed to measure the scattering in two locations symmet-

rically located with respect to the beamline. By averaging the two results,

extraction of the beam momentum (and beam energy) is independent of the

beam trajectory to first order.

A summary plot for the energy festival is given in Figure 4.7. All of the results listed

are extrapolated from spin precession calculations based on polarimetry at the injector

and experimental halls except for the three cases noted. The energy measurements

were performed for two beam delivery configurations, “initial” and “final”, between

the three halls. The final configuration was used for this experiment.

4.2.5 Average Linac Energy: In Conclusion

A synopsis of the three methods for quoting the beam energy are shown in Table 4.5.

The value for all three are in very good agreement. The value used for the remainder

of the analysis is the average of the two methods used during the experiment, Elinac =

(420.26 ± 0.26) MeV.
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Figure 4.7: Results of the energy festival are shown.

Description Elinac (MeV)

Hall C Arc Method (420.51 ± 0.11) MeV

Spin Precession (420.00 ± 0.50) MeV

Energy Fest (for comparison) (420.19 ± 0.39) MeV

Table 4.5: Summary of the average linac energy (Elinac) determined during the ex-
periment compared to the energy festival result.

4.2.6 Measurement of the Momentum Spread, ∆p
p

To estimate the momentum spread, ∆p
p

, beam profile scans were performed with

the Hall C beamline in a dispersive mode. The dispersion of a beam is defined as

the transverse beam position dependence upon the momentum spread of the beam.

The analogy to a prism is identical. The path of a monochromatic energy beam

passing through a dispersive magnetic system will be the same for all particles in the

beam with the same initial conditions. However, the trajectory of particles within
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a beam with a spread in beam energy, or momenta, passing through a dispersive

magnetic system will follow different paths. The dispersion in the beamline can be

calculated from the optics of the magnetic elements. At the location of the superharp

approximately 200 cm upstream of the polarimeter target the dispersion is ηx = 12.5

meters. Therefore, for example, a point–like beam with a momentum spread of ∆p
p

=

1 × 10−3 at the location of the first superharp would have a transverse width of

12.5 mm at the last superharp in the dispersive mode.

Scans of the horizontal beam profile used for the Hall C arc energy measurement

are shown in Figure 4.8. The scanning tungsten wire has a finite thickness (22µm)

Figure 4.8: Plot (a) shows the horizontal wire scan profile at the first superharp
location. Plot (b) shows the effect on the beam profile, for a similar horizontal wire
scan profile, for transporting the beam to a location with horizontal magnification
Mx = 3 and dispersion ηx = 12.5m.

and because the size of the wire is comparable with the size of the beam in the first
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scan the resultant profile is increased. In other words, an infinitesimally thin wire

would resolve a narrower beam profile. The measured profile is then the convolution

of the true beam profile with that of the wire. If the wire is modeled with having

a Gaussian interception profile σwire = 22µm then the relationship between the true

beam profile σtrue and the measured beam profile σmeas is

σ2
meas = σ2

true + σ2
wire, (4.16)

where the true beam profile σtrue = 98.5µm.

The same approach is used to calculate the effect on the beam profile as measured

at the final superharp. However, in this case, the final measured beam profile depends

upon the convolution of the magnification of the original beam, the dispersion of the

transport arc, and the wire thickness,

σfinal
2 = (Mxσtrue)

2 + (ηx
∆p

p
)2 + σ2

wire. (4.17)

Using the result from the first superharp scan and from the Hall C transport optics

where the magnification Mx = 3 and the dispersion ηx = 12.5 meters, each with a 5%

error, the one sigma ∆p
p

= (1.48 ± 0.15) × 10−4.

Another approach, which validates the assumption that it is acceptable to model

the wire with a Gaussian interception profile σwire = 22µm is to simply associate a

systematic error of 22 µm with each harp profile measurement. A calculation of ∆p
p

proceeds exactly the same except that the σ2
wire term in both Equations 4.16 and 4.17

are omitted. In this case the one sigma result is ∆p
p

= (1.47 ± 0.14) × 10−4.

4.3 Systematic Effects in Measuring the Beam Polarization Sensitivity

Measuring the beam polarization sensitivity depends on how well the beam polar-

ization and orbit can be determined in the accelerator, and the extent to which

parameters such as the beam intensity and profile at the Møller polarimeter change

during a measurement. A measure of the quality for setting the desired polarization
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orientation at arc 7 is given in Section 4.3.1. Section 4.3.2 discusses the beam orbit

measurement in the accelerator and the beam position stability at the polarimeter.

The effects of the beam quality on the polarimeter systematics are described in Sec-

tion 4.3.3. Results are presented for both non–rastered and rastered beam profiles at

the Møller target in Sections 4.3.4 and 4.3.5, respectively. The effect of the beam

quality on the polarimeter analyzing power, Azz, and to the target polarization, P T
z ,

are estimated in Section 4.3.6 and Section 4.3.7, respectively. Finally, the uncertain-

ties in these quantities correlated with the beam orbit perturbation are summarized

in Section 4.3.8.

4.3.1 Defining Beam Polarization at Recirculation Arc 7

The effect of the beam orbit on the polarization is predicted to depend upon the

angular orientation of the polarization in the recirculation arcs. The injector spin

rotators define the initial angular orientation of the beam polarization prior to in-

jection into the accelerator. The nominal spin transport model, using the measured

average linac energy, Elinac, then determines the angular orientation at the entrance

to arc 7. Comparing this orientation with the desired orientation indicates how well

the polarization orientation is prepared for the experiment.

To make the comparison, the desired spin vector is denoted by �s7. The propagated

spin vector, based upon the measurements, is denoted by �sp. A program named

Launchv8 was written to calculate and interpret the spin transport results for this

experiment. �sp is calculated by starting with the injector spin vector for each data set.

Then, the injector spin vector is rotated by the nominal spin transport matrices for

3.5 passes of the accelerator using the average linac energy. The comparison is made

by determining the inclusive angle, θmisalign, between the desired and propagated spin

vectors at arc 7

θmisalign =
�s7 · �sp

|�s7||�sp|
. (4.18)

A plot of θmisalign for the 18 data sets is shown in Figure 4.9. The reasonable agreement
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Figure 4.9: The inclusive angle θmisalign between the desired spin vector �s7 and the
propagated spin vector �sp at recirculation arc 7.

indicates that the desired angular regions of the study were reached. There is no

impact on the experiment in that θmisalign is small. For the analysis, the spin direction

based on the injector spin rotators and average linac energy measurements, �sp, are

used in any event.

4.3.2 Beam Orbit Stability

The stability of the beam orbit is an important factor. A typical data set involves

between 50 and 80 orbit perturbations. Each orbit is one of two types, denoted

by O1 or O2. The orbit perturbations are interleaved (O1, O2, O1, O2, etc.). The

two orbits are meant to be symmetrical to one another in the vertical plane. The

measured beam position indicates that the two orbits are generally symmetrical, but

not perfect reflections of one another. This point is discussed later in the analysis
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sections. Beam orbit stability is distinguished by three cases; (a) reversal of the

beam orbit in recirculation arc 7; (b) isolation of the perturbed orbit to within the

arc; and (c) correlation of the beam position at the polarimeter target to the orbit

perturbations.

An orbit reversal, O1 → O2 or O2 → O1, occurs once every 120 seconds. The

horizontal and vertical beam position is sampled by beam position monitors (BPMs)

in the accelerator. Beam position readbacks (from data set # 3) for a monitor near the

center of the arc are shown in Figure 4.10. The plots clearly show the orbit reversal,

apparent in both planes of the beam orbit. It is also clear that the amplitude of

Figure 4.10: The horizontal (vertical) beam position at the center of the recirculation
arc is shown in the upper (lower) plot. One of the two interleaved orbits O1 (O2) is
denoted by the symbol x(o).

the beam orbit in both planes is not measured to be symmetrical about the origin
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as described by the beam position monitor. Although the perturbing magnets only

deflect the beam vertically, mis–alignment of the magnets is suspected to cause the

minor horizontal motion correlated with the orbit perturbation. From the figure the

ratio of the vertical to horizontal orbit amplitude is ≈ 4.4 mm
0.2 mm, or 22 : 1. Similar

results for all 18 data sets are shown in Figure 4.11. The upper two plots of the figure

Figure 4.11: The average horizontal (vertical) beam position at the center of the
recirculation arc is shown in the upper (lower) plot. The plots show the results for
the 18 data sets.

show the horizontal position (averaged over the course of data set #3) for each orbit

(O1 and O2) and their difference (O1 −O2). The lower two plots show similar results

for the vertical beam position. The amplitude of the horizontal and vertical beam

orbit are proportional in all cases. The upper left plot of the figure indicates that

the absolute horizontal position of the reference orbit changed after data set # 4.

However, the difference orbit data in the upper right plot indicate that the correlated

horizontal motion is generally bounded by ≈ 250 µm for the entire experiment. This
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is an important point, and indicates that the position stability of the beam orbit is

generally not correlated to the absolute beam position measured. The lower right

plot indicates the relative orbit amplitude being studied for the data sets.

Next, the isolation of the orbit perturbation is considered. The beam orbit per-

turbations are meant to be executed in the vertical plane of arc 7 proper. To show

this, the difference between the two orbits (O1 −O2) from the beginning of arc 7 and

ending at the Hall C polarimeter is shown in Figure 4.12. The upper plot shows the

Figure 4.12: The horizontal (vertical) difference in beam orbit is shown along the
length of the recirculation arc in the upper (lower) plot. The 3 vertical bars delineate
the arc proper and the remaining transport to the Møller polarimeter.

difference between the horizontal position of both orbits. The lower plot shows the

result for the vertical beam motion. The three vertical bars indicate the start of arc 7,

the end of arc 7, and the polarimeter location, respectively. The orbit perturbations
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are clearly isolated to the vertical plane of arc 7. Isolation of the orbit perturbations

shown is typical for the experiment.

Finally, the absolute beam position at the Møller target foil is considered. The

horizontal and vertical beam position is measured approximately 100 cm upstream

of the target. Measurements are shown in Figure 4.13 for data set # 3. Again, the

Figure 4.13: The horizontal (vertical) beam position just prior to the Møller polarime-
ter target foil is shown in the upper (lower) plot. The x (o) symbol represents the
two interleaved orbit O1 (O2).

vertical beam position is typically more stable. This results because only vertical

deflection magnets control the orbit perturbations; there are no horizontal deflection

magnets correlated with the orbit perturbations. The difference of the beam position

correlated to the orbit perturbation is plotted for all 18 data sets in Figure 4.14. The

upper two plots show the average horizontal beam position for each orbit (O1 and O2)

and their difference (O1−O2). The lower two plots show similar results for the vertical
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Figure 4.14: The average horizontal (vertical) beam position upstream at the Møller
polarimeter target foil is shown in the upper (lower) plot. The plots show the results
for the 18 data sets.

beam position. It is useful to notice that although the absolute beam position may

differ for each data set, the difference between the beam orbits is essentially constant

at the polarimeter target for all of the data sets. In our case, the control of the beam

position at the target is ∆x ≤ 200 µm and ∆y ≤ 50 µm.

4.3.3 Beam Parameters at the Møller Polarimeter

The beam parameters are meaningful to determine the accuracy of the Møller po-

larimeter results. The beam current (I), beam profile (σx or σy), beam energy (E),

and momentum spread (∆p
p

) may affect the result. The extent to which these pa-

rameters are important for this experiment is determined by the impact each has to

a sensitivity of the polarimeter correlated with the orbit perturbation. If the beam

current it too large then the target polarization P T
z can be reduced by heating of the

133



target by the beam. Alternatively, the effective analyzing power Azz of the polarime-

ter depends to some extent on the beam profile and beam position at the target.

These factors certainly affect the absolute measurement of the beam polarization.

However, this experiment is only sensitive to parameters that change with the orbit

perturbation.

Beam rastering is a common technique to reduce target heating by increasing

the area over which the beam strikes the target. A rastering system was used in this

experiment except for three early data sets (#2, #3, #4). Therefore, the non–rastered

and rastered data sets are presented separately.

4.3.4 Non–Rastered Beam Profile in Achromatic Mode

The results of this section describe the beam profile at the polarimeter target without

the use of beam rastering. The optics of the arc were in their nominal achromatic

mode (focusing elements energized). The non–rastered data sets are #2, #3, and

#4. These correspond to the orbit conditions 0:0, M:M, and M
2

:M
2

using a transverse

polarization orientation. These conditions were repeated later in the experiment with

the use of beam rastering. This was done to ensure no loss of data due to the un–

rastered beam and to improve the statistics of the measurement.

The beam position and profile for data set # 3 were measured using a superharp.

The beam profile was measured approximately 200 cm upstream of the target by the

last superharp before the polarimeter. Although the beam position resolution of the

superharp is better than the beam position monitors in the transport arc, the su-

perharp is destructive to the beam. Therefore, only periodic scans were made of the

beam profile. The horizontal and vertical beam profiles for each orbit, O1 and O2,

are shown in Figure 4.15. The beam centroid and width are extracted from the data

by fitting the measured profiles. The difference in the beam centroid between the

two orbits is calculated using a systematic position uncertainty for the superharp of

10 µm per profile scan. The difference in the beam centroid for the horizontal and ver-
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Figure 4.15: Profiles for the non–rastered beam were measured for both orbit pertur-
bations O1 and O2.

tical profiles are ∆x = (150 ± 21) µm and ∆y = (5 ± 16) µm, respectively. Both are

consistent with the upper bounds as determined by the relative BPM results for the

entire data set. Again, the horizontal beam position correlated to the orbit pertur-

bation is stronger because the orbit deflection magnets cannot correct the horizontal

orbit.

The beam widths extracted from the profiles are σx = (119.0 ± 13.1) µm and

σy = (25.4 ± 10.4) µm. In this case, the horizontal profile is large enough so that

it can be corrected as done in Section 4.2.6. However, the vertical beam width is

narrow enough that the wire is almost entirely intercepting the beam at one or two

positions in the scan. In this case, the measured width only provides an approximate

measure of the vertical beam width. The corrected horizontal width is calculated to

be σx = (117.0 ± 16.5) µm.
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The aspect ratio of the transport between the first and last superharp is then σx

σy
≈

4.7. The beam profile was separately measured to be round entering the transport arc.

These results are used later to determine the sensitivity of the polarimeter analyzing

power and target heating effects for data sets #2, #3, and #4.

4.3.5 Rastered Beam Profile in Achromatic Mode

The effects of target depolarization due to target heating by ionization energy loss

of the beam in the target material can be problematic. This occurs when the beam

intensity is too large or the beam spot is too small. Since it is not desirable to reduce

the beam intensity (it increases the time required to measure the effect) a common

technique is to raster the beam over the target area thereby dissipating the beam

power over a larger area and, for a thermally conductive target, reducing the peak

target temperature. This target is located in a vacuum chamber so convective heat

transfer is essentially zero and radiative heat transfer is also shown to be insubstantial.

The Møller raster system consists of a pair of magnets to deflect the beam in the

two transverse directions, respectively. To accomplish this, one magnet is rotated by

90◦ with respect to the other about the beampipe. Each magnet is powered by a

function generator and power amplifier operating with a frequency f = 10.25 kHz. A

constant phase delay of 90◦ exists between the power supplies for the two magnets.

Therefore, the magnets deflect the beam orbit in a circle at 10.25 kHz. As determined

earlier, the magnification for the orbit motion in the two transverse planes is in ratio

Mx

My
≈ 5.

The horizontal and vertical beam profiles for each orbit, O1 and O2, were mea-

sured. The profiles for are shown in Figure 4.16. Notice that in all four plots the wire

scan exhibits a regular baseline signal, apparently interleaved with the true beam in-

tensity signal. This zero is an artifact of the method by which the superharp system

samples the beam intensity. The true intensity profile is bounded by the envelope of

the data in each scan. This was checked by performing a simulation to determine the
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Figure 4.16: Profiles for the rastered beam were measured for both orbit perturbations
O1 and O2.

rastered beam envelope.

A simulation was performed to reproduce the envelope of the superharp scan.

The raster pattern was simulated by distributing the nominal beam profile along an

elliptical curve with major axis a and minor axis b. For the case shown in Figure 4.16

the values for the simulation are a = 1.80 mm and b = 0.25 mm. The results of the

simulation are shown in the projection near the target plane in the upper left plot

of Figure 4.17. The horizontal and vertical projections indicate general agreement

with the size of the raster pattern. However, the profiles between the simulation

and measurement indicate that the actual profile may not be purely elliptical. The

important feature to extract from the result is that the elliptical raster pattern can

be used to approximate the overall shape and size of the rastered beam. A more

detailed description of the rastered beam could be constructed, however, this descrip-
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tion is useful enough for bounding the effects of the rastered beam to the polarimeter

systematics (which are themselves shown to be small).

Figure 4.17: The simulation of the rastered beam at the Møller target foil is shown
with the projections of the beam onto the horizontal and vertical axes.

4.3.6 Simulation Results for Azz

The Hall C Møller polarimeter described in Section 3.6 is modeled using a Monte

Carlo simulation program. The program was originally developed for characterizing

a single–arm Møller polarimeter at SLAC [Sw95]. The version running at CEBAF

has been modified for the two–arm coincidence Møller polarimeter in Hall C. The

program includes the calibration data for the magnetic spectrometer and the spatial

geometry of the collimators and detectors. The simulation program was used to

determine the effect of the beam profile and position at the polarimeter target to the

average analyzing power Azz.
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The average analyzing power Azz is determined from the simulated coincidence

rate in the program. Simulation options include multiple scattering, radiative correc-

tions (inclusive and exclusive processes), and a correction for the momentum of the

target electrons. This final effect was realized by Levchuk [Le92]. He reasoned that

the asymmetries measured in Møller scattering could be diluted or enhanced by the

intrinsic momenta of the target electrons. The size of this effect depends mainly on

the center–of–mass detector acceptance and is calculated by using the known target

atomic electron momentum distributions in the simulation code. The correction to

the analyzing power is approximately +3% for the acceptance of this polarimeter.

The detector collimators and spectrometer optics determine the coincidence accep-

tance for the detectors. The lead glass detectors are designed to have an angular

acceptance of 83 ◦ to 97 ◦ in the center–of–mass. The program then calculates the

analyzing power from the simulated cross section (coincidence rate)

Azz =

∫
AzzσdΩ∫

σdΩ
. (4.19)

Simulations were performed to determine the sensitivity of the effective analyzing

power Azz to the beam conditions. The simulations were performed for a beam

energy of 3.409 GeV using the quadrupole setpoints and collimator geometry of the

polarimeter. The first set of simulations were performed to determine the relative

change in Azz from the theoretically calculated value. These results are shown in

Table 4.6 for a nominal beam spot at the polarimeter; σx = 200 µm and σy = 100 µm.

The simulation code was run for multiple cases to determine the sensitivity of Azz

to the beam conditions of the experiment. In all cases, multiple scattering at the

target, radiative corrections, and the Levchuk effort were included. The number of

events processed in each simulation was 108. The results are shown in Table 4.7. The

results for cases #1 and #2 show little difference between the smallest beam profile

measured for this experiment and the typical beam profile at the Møller target. Cases

#2 and #3 compare the effect of turning the rastering system on. Cases #3 and #4

compare moving the raster pattern to consider the spot motion correlated to the orbit

139



Case Azz

QED Exact (−7
9
) −0.7778 ± 0

Simulation (I) −0.7756 ± 0.0003

Simulation (M+R+L) −0.7951 ± 0.0029

Table 4.6: Azz calculated by Monte Carlo when considering different simulation condi-
tions; (I)deal case, (M)ultiple Scattering, (R)adiative corrections, and the (L)evchuk
effect.

Case x0 y0 σx σy rminor rmajor Azz

(mm) (mm) (µm) (µm) (mm) (mm)

# 1 0.0 0.00 117.0 25.4 0.00 0.00 −0.7952 ± 0.0029

# 2 0.0 0.00 200.0 100.0 0.00 0.00 −0.7951 ± 0.0029

# 3 0.0 0.00 200.0 100.0 1.80 0.25 −0.7951 ± 0.0030

# 4 0.5 0.25 200.0 100.0 1.80 0.25 −0.7951 ± 0.0029

# 5 -0.5 -0.25 200.0 100.0 0.00 0.00 −0.7948 ± 0.0029

Table 4.7: Monte Carlo simulation results of the Møller polarimeter for various beam
conditions relevant to the 18 data sets. (x0, y0) are the beam centroid, (σx, σy) are
the beam widths, (rminor, rmajor) represent the minor and major axis for the rastering
pattern, and Azz is the effective analyzing power.

perturbations. In this comparison the beam spot was moved ≈ 2 times larger than

observed in the experiment. Cases #4 and #5 considers moving the entire beam away

from the target center. This was checked to determine if the rastering decreases the

overall sensitivity of the effective analyzing power to the beam position, by averaging

over a larger area of the target foil. Indeed, the simulation code indicates this may

be the case. The effective analyzing power is predicted by the simulation code to be

largely insensitive to the beam profiles and beam motion associated with the orbit

perturbations. The value used for all of the data sets is Azz = −0.7951 ± 0.0030.
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4.3.7 Target Temperature Effects

The Møller scattering asymmetry depends upon both the beam and target electron

being, on average, oriented with respect to one another. To measure the beam polar-

ization the target electrons, therefore, must be polarized. To accomplish this a ferro-

magnetic material is chosen for the target. Ferromagnetism is essentially a quantum

mechanical effect. It is described by an interaction which aligns the atomic dipole mo-

ments of neighboring atoms to one another. This is despite the randomizing tendency

by the thermal motion of the atoms to break the alignment. Magnetization results

when the atomic electron spins of the foil are aligned in an external field. However,

as the temperature of the ferromagnet increases mis–alignment of the electron spins

by thermal motion reduce the magnetization. Above a point, called the Curie tem-

perature Tc, the ferromagnetism abruptly ceases; the material becomes paramagnetic

(linear magnetization with applied field). Below this point, the magnetization, Ms,

varies with temperature according to the law

Ms(T )

Ms(T = 0K)
≈ 1 − k · T 3

2 , (4.20)

where k is a constant of the material.

The target for this polarimeter is a pure iron foil. Iron does not have the largest

polarizability of all ferromagnets. However, it has the most well understood polar-

izability, thereby minimizing systematic uncertainty in determining the foil magne-

tization. Further, iron has the largest ratio of polarizable electrons to total atomic

electrons, thereby making the material a suitable choice for a high–precision polarized

solid target. The foil is positioned by a target ladder and oriented normal to the beam

direction. The foil is polarized by immersing it in a strong magnetic field. A pair of

superconducting Helmholtz coils produce a uniform field of 3 Tesla. The saturation

magnetization is defined at zero magnetic field and zero temperature. For pure iron

this value is Ms(T = 0, B = 0) = 2.216µB, where µB is a Bohr magneton. The cor-

rections for pure iron at room temperature and in a 3 Tesla magnetic field have been

computed [Lo96]. The increased temperature reduces the magnetization 2%. The
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large magnetic field increases the magnetization 0.5% by the paramagnetic effect.

The resulting magnetization is Ms(T = 294◦K, B = 3T ) = 2.181µB. This represents

the contribution of both the electron spin and the electron orbital magnetization due

to the electron motion (current) in the iron atom,

Ms = Mspin + Morbit. (4.21)

The orbital magnetization for iron is Morbit = 0.0918µB. Consequently, the magne-

tization due to spin is extracted; Mspin = 2.0911µB. Finally, the polarization of the

iron is determined by the ratio of the spin magnetization of an iron atom to the total

number of electrons in an iron atom (Z=26). The value has been calculated in the

same reference [Lo96] to be (8.043 ± 0.015)%.

The effect of the beam current on the foil is now considered. The beam de-

posits energy in the target through collision and radiative losses. These losses are

characterized by the energy loss per unit length, dE/dx, usually expressed in the

units of (MeV–cm2)/g. The target used for the experiment is a pure iron foil 4µm

thick. The density of iron at 300◦ K is ρ = 7.87 g/cm3, therefore the target thick-

ness is ρt = 3.15 mg/cm2. The average ionization energy loss at Ebeam ≈ 3 GeV is

dE
dx

≤ 2 (MeV − cm2)/g. The power deposited in the target by the beam is given by

Ptarget =
dE

dx
· ρ · t · ibeam, (4.22)

where ibeam is the beam current in microamperes. The beam current varied between

2 − 4 µA for all data sets as demonstrated in Figure 4.18. For maximum beam current

(4 µA) the power dissipated in the target by the beam is then Ptarget = 25.2 mW.

Two points relevant to the experiment are to be made about target heating. The

first point is that the deposited power heats the target material. The equilibrium

temperature of the target depends upon the target thermal conductivity, geometry,

environment, and the beam current and profile (size). The Curie temperature for

iron is 770◦ C. These factors are extremely important to an absolute polarization

measurement. The second point is that this experiment does not require an absolute
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Figure 4.18: Average beam current ibeam for the 18 data sets.

measure of the beam polarization. The important factors are whether the beam

current or beam profile change significantly with the orbit perturbation in arc 7. The

target geometry and environment are assumed to be fixed. The thermal conductivity,

although temperature dependent, is only weakly temperature–dependent above 70◦ K.

To address the first point, the equilibrium target temperature due to energy de-

posited of dE/dx loss is considered. The area over which the beam is distributed

affects the final target temperature. For this reason the beam spot size is increased

at the target location. To do this we used a beam rastering system (except for data

sets #3, #4, and #5). The rastering system substantially increases (by 102) the

interception area of the target by the beam. This greatly suppresses target heating

effects, enabling a better absolute measure of the beam polarization. But more im-

portantly, it decreases the sensitivity to the beam current and position fluctuation at

the target. As the equilibrium target temperature depends on the interception area of
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the electron beam, the non–rastered and rastered cases are treated separately. Recall

that the non–rastered data sets were repeated with beam rastering. Therefore, con-

clusions of the polarization sensitivity can be based from a consistent set of operating

conditions. The case for the rastered beam is treated first.

The current distribution for the rastered beam is elliptical (Mx

My
≈ 5). The solution

of the equilibrium target temperature is determined by solving Laplace’s equation

with a steady–state heat source (power deposited by the beam). Although, the current

distribution is elliptical, the approach to this problem is readily (and more easily)

solved for the circular case. An upper bound for the target temperature can be made

by making this approximation. A heat source by a circular rastered beam contained

in an annular region of the target defined at the beam radius rb can be approximated

by,

P (r)target = Pbeam
δ(r − rb)

2πr
. (4.23)

The solution of Laplace’s equation satisfying this condition [Pi58] is given by

T (r, t) =

(
Pbeam

πr2
t κl

)
·

∞∑
m=1

J0(βmr) · J0(βmrb)

β2
mJ2

1 (βmrt)
· (1 − e−αβ2

mt), (4.24)

where Pbeam is the deposited beam power (Watts), l is the target thickness (cm),

rt = 1.3 cm is the radius of the target before contacting the target ladder (large

thermal mass), and κ = 0.753 W/(cm◦K) is the thermal conductivity of iron at 300◦ K.

βm corresponds to the mth zero of the Bessel function J0(βmrt). The equilibrium

temperature is defined by the geometry of the target and the material,

α =
κ

cpρ
, (4.25)

where cp = 0.453 J/g◦K is the specific heat capacity and ρ = 7.9 g/cm3 is the density of

iron. The first three zeros of J0(βmrt) are given by β1 = 2.41 cm−1, β2 = 5.52 cm−1,

and β3 = 8.65 cm−1. Consequently, the equilibrium temperature is dominated by

β1. For the time dependent factor to contribute less than 5% (e−3), a duration of

2.46 seconds is required.
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To bound the case of the real rastered beam current distribution the circular

solution is applied for the minimum (rb = rmin minor axis) and maximum (rb = rmax

major axis) radii of the real distribution as determined in Section 4.3.5. This approach

is depicted in Figure 4.19. The solution of Equation 4.24 for the two cases are shown

r
min

r
max

x

y

Rastered
Beam

Figure 4.19: The diagram indicates the two circular hoop beams at radii rmin and
rmax that bound the actual beam intensity profile near the target.

in Figure 4.20. The central target temperature within the rastered circle is constant

and falls quadratically beyond the rastering radius. The temperature rise ∆T and

the equilibrium temperature Tfinal (Tinitial = 27◦ C) are shown in Table 4.8. It is

reasonable that the central target temperature is uniform because of the cylindrical

symmetry of the circular raster model. Indeed, the result of this case bears the same

dependence for a uniformly distributed current distribution of the same radius. The
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Figure 4.20: The increase in the iron target foil temperature as a function of the
radial position of the target is shown. This case is for a circular hoop raster pattern,
a 4 µA beam current, and a 4 µm thick iron foil. The increase in temperature has the
cylindrical symmetry of the circular raster pattern.

Beam Radius ∆T Tfinal

rb = 0.025 cm 52.6◦ C 79.6◦ C

rb = 0.180 cm 26.3◦ C 53.3◦ C

Table 4.8: The increase (∆T ) and equilibrium (Tfinal) temperature of the iron target
foil for the two cases of a circular hoop beam that bound the actual beam intensity
profile near the target.

temperature rise for a disk source of heat is calculated to be

∆Tdisk =
(

Pbeam

2πκt

)
· ln

(
rt

rb

)
. (4.26)

Either solution can then be used to consider the case for the non–rastered beam.

The non–rastered beam is considered for the case where it deposits the collisional
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energy within the 1-σ radius of the beam spot. The measured horizontal and vertical

beam are take from the results of Section 4.3.4. Again, the beam profile has an

elliptical shape and the real case is considered by bounding the ellipse by a smaller

and larger radius beam size. The results are given in Table 4.9

Beam Radius ∆T Tfinal

rb = σx = 0.0117 cm 62.7◦ C 89.7◦ C

rb = σy = 0.0025 cm 83.3◦ C 110.3◦ C

Table 4.9: The increase (∆T ) and equilibrium (Tfinal) temperature of the iron target
foil for the two cases of a circular disk beam that bound the actual beam intensity
profile near the target.

To return to the second point we consider the correlation of the beam current

to the orbit perturbation. The beam current is sampled about 24 times over the

duration of each orbit perturbation (120 sec). In this way, the fluctuation in beam

current from O1 → O2 or O2 → O1 can be determined. The result for data set #3 is

shown in Figure 4.21. The upper plot shows the average beam current during ≈ 60

successive orbit perturbations. The downward slope in the average beam current is

likely an artifact of slow beam motion in the injector which increases interception with

defining beam apertures and results in beam loss. The cause for the semi–periodic

oscillation in the beam current which occurred every 6-8 orbit cycles (12 minutes) is

unknown, however, it is likely correlated to injector beam interception. There is no

obvious correlation of the beam current to the beam orbit, as expected. The lower

plot reinforces this point. The plot shows the difference in the average beam current

between successive orbit perturbations. The important points to extract is that (a)

there is no correlation in the beam current to the orbit perturbation; (b) the average

current difference in size between successive orbits < 50 nA; and (c) the differences

are statistically consistent with zero.

Extending this to all the data sets, the difference between the average beam current
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Figure 4.21: The beam current versus orbit perturbation type is shown in the upper
plot for both orbits O1 and O2. The difference in beam current between successive
orbits is shown in the lower plot. The results are from data set #3.

of both orbits is computed, and is shown in Figure 4.22. The relatively large error bars

are due to overestimating the orbit–to–orbit difference by considering the difference

of the average beam current for both orbits for each data set (lasting approximately

2 hours). The particularly large error bar in data set #10 is explained by an increase

in the beam current from 3 µA to 4 µA approximately two–thirds of the way through

the measurement to increase the data rate. In conclusion, the beam current for the

experiment is stable from orbit to orbit at the level of ≤ 2% and is not correlated to

the orbit perturbation.

The equilibrium polarization and sensitivity to the beam current and profile is

considered. The dependence of the saturation magnetization of iron on temperature is

shown in Figure 4.23. The plot shows the results of a measurement [Lo96] compared to
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Figure 4.22: Beam current difference between O1 and O2 for all 18 data sets.

world data for iron. The slope of the plot is increasingly negative at larger temperature

so we consider the larger equilibrium temperature (greatest depolarization) for the

rastered and non–rastered cases. The reduction in polarization from the no–beam

configuration (P T
z = 8.043 ± 0.015%) for the two cases is estimated in Table 4.10.

Case Relative Depolarization Target Polarization P T
z

Rastered (−2.5 ± 0.1)% (7.842 ± 0.016)%

Non–Rastered (−2.9 ± 0.1)% (7.810 ± 0.016)%

Table 4.10: Estimate of the relative depolarization due to the rastered and
non–rastered beam profiles.

Finally, the beam position at the target is considered. The beam motion at the

polarimeter target is estimated to be d =
√

∆x2 + ∆y2 ≤ 210 µm. This motion is

small compared to the size of the target covered by the rastered beam. However, it is
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Figure 4.23: The temperature dependence of the magnetization of iron with temper-
ature. The results of a measurement [Lo96] are compared with world saturation data
for iron.

comparable to the size of the non–rastered beam. In this case, the beam may physi-

cally move by more than one spot size of the beam at each orbit reversal. The time

constant for the equilibrium temperature to be reached for this target is estimated

to be ≤ 3 seconds. Therefore, the equilibrium temperature is reached in less than 2.5

% of each measurement interval (120 seconds), and more importantly, affects both

orbits equally.

4.3.8 Conclusion of Systematic Polarimeter Effects

The two main effects considered as a source of systematic uncertainty correlated to the

beam orbit perturbation are the modification of the effective analyzing power Azz and

the depolarization of the polarimeter target with, and without, beam rastering. The

relative uncertainty in each of these is listed in Table 4.11. Referring to Equation 3.45

the estimated systematic relative error contribution to the difference in measured
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Polarimeter Parameter Relative Uncertainty(
δAzz

Azz

)
0.38 %(

δP T
z

P T
z

)
Rastered

0.20 %(
δP T

z

P T
z

)
Non−Rastered

0.20 %

Table 4.11: The maximum relative uncertainties in the polarimeter systematics for
the effective analyzing power and target polarization correlated with the orbit per-
turbation type is shown.

polarization is small

δP B
z

P B
z

=

√√√√√(
δAzz

Azz

)2

syst

+

(
δP T

z

P T
z

)2

syst

= 0.43%. (4.27)

4.4 Results and Analysis for Polarization Sensitivity Measurements

The extraction of the experimental asymmetries and calculation of the beam polariza-

tion are discussed in Section 4.4.1. The interpretation of the data for determining the

sensitivity of the beam polarization angular dependence and orbit amplitude depen-

dence is given in Section 4.4.2. Simulation results for the angular and orbit amplitude

dependencies are compared with measurements in Section 4.4.3. Finally, a hypothesis

for the discrepancy between the measurements and simulation results is discussed in

Section 4.4.4.

4.4.1 Extracting the Experimental Asymmetries

The measurement of the beam polarization at the Møller polarimeter is determined

by measuring the coincidence scattering rate for two helicity states of the beam.

The difference in these rates, divided by their sum, gives the measured experimental

asymmetry, ε. This asymmetry is directly proportional to the longitudinal component

of the beam polarization at the polarimeter target.
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Measuring the coincidence scattering rate is a scaler measurement. The coinci-

dence events between the two arms (detectors) of the polarimeter are recorded for a

given helicity state. The helicity is reversed at 1 Hz, and it is necessary to bin the

coincidence events separately for each helicity. Further, the overall rate depends upon

the number of electrons in the beam which reach the polarimeter target. Because the

coincidence events are being separated by helicity, it is then necessary to normalize

the number of events in each helicity cycle to the total number of electrons striking

the target during the same cycle. Therefore, the beam current and measurement

duration for each helicity are recorded in scalers too. One final level of separation

must be performed. A polarimeter measurement spans many orbit reversals. There-

fore, to determine the polarization for each orbit separately the coincidence events

must also be categorized by orbit perturbation, O1 or O2. All levels of separation

were accomplished in the scaler banks used to record the coincidence rate data. Each

polarimeter run lasted approximately 20 minutes, at a coincidence rate of ≈ 30 kHz.

Extracting the experimental asymmetries for both orbits was performed using an

off–line data analysis program written for the polarimeter. The program calculates

the total experimental asymmetry for each orbit (ε1 or ε2) from each polarimeter

run. The experimental asymmetries for the entire experiment are plotted versus

Run # in Figure 4.24. The run numbers are grouped into their respective data

sets and combined to produce an experimental asymmetry for each of the two orbit

perturbations. A summary of the polarimeter data for each of the 18 data sets is

given in Table 4.12. Lastly, the measured component of the beam polarization (PB
z )

is calculated using the effective analyzing power Azz determined in Section 4.3.6, and

the target polarization determined in Section 4.3.7. The polarization for both orbits

(P1 and P2) and their difference (∆P = P1−P2), are plotted in Figure 4.25. Indicated

in the upper plot, nearly the maximum beam polarization (P0 = 68.4%) was observed

for data set #15 and data set #18. The data sets with nearly zero polarization

correspond to the orientations which are transverse to the accelerator bend plane (and

the target polarization). The calculated difference in polarization (∆P ) between the
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Figure 4.24: The calculated experimental asymmetries ε1 and ε2 for each Møller
polarimeter run for the duration of the experiment are shown.

two orbits is the component of the effect measured at the polarimeter. The size of

this component is ≈ 3% of the maximum beam polarization (∼ 10−2 effect).

4.4.2 Interpretation of Polarization Results

To describe the sensitivity of the beam polarization to the beam orbit we describe the

effect in terms of the spin transport matrix formalism discussed in Chapter 2. Each

of the two perturbed orbits can be described by a spin transport matrix,

SO1 =


Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz


O1

(4.28)
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DATA Desired Arc 7 Run # ε1 ε2

SET Orientation Start : End ×10−2 ×10−2

#1 [-147,+000] 23323:23323 0.3019 ± 0.0641 0.2556 ± 0.1058

#2 [+090,+090]0:0 23329:23334 0.0873 ± 0.0094 0.0747 ± 0.0094

#3 [+090,+090]M:M 23335:23342 0.1581 ± 0.0079 0.0498 ± 0.0080

#4 [+090,+090]M
2

:M
2

23343:23347 0.1350 ± 0.0102 0.0645 ± 0.0102

#5 [+090,+180]M:M 23358:23361 2.1766 ± 0.0084 2.1628 ± 0.0083

#6 [+090,+135]M:M 23362:23365 1.7109 ± 0.0086 1.6207 ± 0.0086

#7 [+090,+225]M:M 23366:23370 1.4451 ± 0.0080 1.5231 ± 0.0079

#8 [+090,+090]M:M 23371:23378 0.1041 ± 0.0080 −0.0147 ± 0.0078

#9 [+045,+090]M:M 23379:23382 −2.4572 ± 0.0088 −2.5256 ± 0.0089

#10 [+135,+180]M:M 23383:23388 4.1862 ± 0.0079 4.1816 ± 0.0080

#11 [+045,+180]M:M 23389:23392 −0.9373 ± 0.0088 −0.9474 ± 0.0089

#12 [+045,+270]M:M 23393:23396 −2.7504 ± 0.0088 −2.6809 ± 0.0087

#13 [+090,+090]M:M 23397:23403 0.1038 ± 0.0066 −0.0326 ± 0.0065

#14 [+090,+090]M:0 23404:23406 0.1102 ± 0.0097 0.0794 ± 0.0098

#15 [+090,+090]0:M 23407:23408 0.0726 ± 0.0112 0.0040 ± 0.0113

#16 [+090,+090]M
2

:M
2

23409:23410 0.0927 ± 0.0120 0.0350 ± 0.0120

#17 [+090,+090]0:0 23411:23414 0.0025 ± 0.0087 −0.0010 ± 0.0086

#18 [+135,+180]M:M 23416:23422 4.1668 ± 0.0086 4.1580 ± 0.0088

Table 4.12: Summary of the experimental asymmetries measured for O1 and O2 for
the 18 data sets indicating the respective polarization orientation at arc 7. The run
numbers can be referenced in Figure 4.24.

and

SO2 =


Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz


O2

. (4.29)
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Figure 4.25: The extracted polarization P1 and P2 for both orbits are shown for each
data set in the upper plot. The difference, ∆P = P1 −P2, is shown in the lower plot.

Both beam orbits act on the same initial spin orientation at arc 7 defined by two

polar angles, �s7 = �s7(θ, φ). In general, the final spin orientations for the two beam

orbits at some later location will be different; this is the effect being studied. The

difference in the final spin orientations can be written as

δ�s = SO1 · �s7 − SO2 · �s7 = (SO1 − SO2) · �s7. (4.30)

For this experiment the difference between the spin vectors would ideally be measured

at the end of arc 7. However, there is no simple means to do this, so the beam

polarization is transported to one of the nearest polarimeters for analysis. In doing

so, the beam polarization associated with each orbit precesses; the difference in the

beam polarization therefore precesses equally. The polarimeter design only analyzes

the longitudinal component of the beam polarization, so the measurable effect is
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finally described,

δ�smeas = (Ry(Ψ7C) · δ�s) · ẑ, (4.31)

where Ry(Ψ7C) describes the nominal spin transport precession between the end of

arc 7 and the Hall C Møller polarimeter. The expression for δ�smeas can be explicitly

written as

δ�smeas = A31 sin(θ) cos(φ) + A32 sin(θ) sin(φ) + A33 cos(θ), (4.32)

where

A31 = − sin(Ψ7C)∆Sxx + cos(Ψ7C)∆Szx

A32 = − sin(Ψ7C)∆Sxy + cos(Ψ7C)∆Szy

A33 = − sin(Ψ7C)∆Sxz + cos(Ψ7C)∆Szz. (4.33)

The ∆Sij are the differences between the spin transport matrices for the two orbits,

(Sij)O1−(Sij)O2. It is important to note that the term which dominates Equation 4.32

is proportional to A32. This is simply because of the condition where

|A31| ≈ |A33| < 10−2 · |A32|. (4.34)

This results because ∆Sij , where neither i nor j represent ŷ, is nearly zero. Consider

the results of Section 2.3.5 as an example. The physical interpretation is that the bend

plane spin precession for both orbits are essentially equal. This result is expected

because both orbits encounter essentially the same bending dipole magnetic fields

(responsible for the bend plane precession).

Consequently, the measurable component of the effect at the polarimeter can be

written to good approximation as

δ�smeas = [− sin(Ψ7C)∆Sxy + cos(Ψ7C)∆Szy] · sin(θ) sin(φ). (4.35)

As noted in Chapter 2, this implies the expected dependence of the effect on the initial

vertical component of the beam polarization. The orbit dependence is represented
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through ∆Sxy and ∆Szy. The precession angle Ψ7C has a practical significance in

determining how much of the effect is finally measurable at the polarimeter.

To understand the sensitivity of the beam polarization to the beam orbit the

experimental results are therefore divided into two groups. The first group represents

the angular dependence of the sensitivity. In this case, the two orbit perturbations, O1

and O2, were repeated for different polarization orientations. The orbit perturbations

were set to have large amplitudes (|O1| ≈ |O2| ≈ 7 mm) to maximize |A32|. The

polarization orientations were chosen to be initially on a cone of opening angle θ

about the momentum direction at the beginning of arc 7. This was done to decouple

the sin(θ) · sin(φ) dependence and to simplify the analysis. The orientations are

therefore described on either of two surfaces, θ = 45◦ or θ = 90◦. The polarimeter

beam raster was used for all of the angular dependence measurements.

The measured sensitivity ∆P for the angular dependence is shown in Figure 4.26,

separate for both surfaces defined by the polar angle θ. The data are listed in Ta-

ble 4.13. The ideal and measured angular polarization orientations are shown in the

table. The measured polarization difference ∆P is given by

∆P =
∆ε

Azz · P T
z

· sin(θideal)

sin(θmeas)
. (4.36)

The final factor in Equation 4.36 is necessary to compare polarization orientations of

the same ideal surface in θ (θ = 45◦ and θ = 90◦). The φ dependence, however, does

not require correction and can be interpreted directly. The polarization sensitivity

for both cases were then fit using the functional form ∆P = ∆Pθ sin(φ), where ∆Pθ

gives the amplitude of the effect on the corresponding surface in θ. The fit results

are listed in Table 4.14. A few conclusions can be drawn from the data and the

fit. For a given surface in θ the dependence on φ is nearly as predicted, indicating

that it is the focusing component of the quadrupole field which dominates the effect.

The amplitude of the fit measures the strength of the polarization sensitivity and is

expected to have a sin(θ) dependence. For the cases being studied the ratio of the
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Figure 4.26: Angular dependence of the measured sensitivity ∆P for the two surfaces
θ = 45◦ and θ = 90◦ at maximum orbit amplitudes.

amplitudes should be
sin(45◦)

sin(90◦)
=

√
2/2 ≈ 0.707, (4.37)

however, the experimentally determined ratio is (0.58 ± 0.04).

The second group of data represents the dependence of the beam polarization

sensitivity to the orbit amplitude. The polarization orientation for this group was

set to be transverse to the bend plane (θ = +90◦, φ = +90◦) to maximize the ex-

pected angular dependence. For orbits which are simply a multiple of one another,

the amplitude dependence is predicted to be linear. This is because the horizontal

component of the quadrupole magnetic field varies linearly with vertical displacement

from the axis of the magnet. For example, to the extent that the effect is indeed lin-
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Data Set (θ, φ)ideal (θ, φ)meas ∆ε ∆P

# Ideal Measured ×10−4 %

9 45 , 90 47.3, 87.3 6.84 ± 1.26 1.06 ± 0.19

11 45 , 180 49.4, 177.0 1.00 ± 1.26 0.15 ± 0.19

12 45 , 270 43.2, 264.4 −6.95 ± 1.23 −1.15 ± 0.20

4 90 , 90 89.6, 86.8 11.9 ± 1.12 1.91 ± 0.18

6 90 , 135 85.9, 134.9 9.01 ± 1.22 1.45 ± 0.20

5 90 , 180 85.5, 178.9 1.38 ± 1.18 0.22 ± 0.19

7 90 , 225 88.7, 222.7 −7.80 ± 1.13 −1.25 ± 0.18

Table 4.13: The raw and corrected data for the angular measurements are shown.
The second column gives the expected angular orientation of the beam polarization
at the beginning of arc 7. The third column gives the measured angular orientation
based upon the injector spin rotator setpoints and average linac energy. The fourth
column gives the difference in the longitudinal asymmetry between the perturbed
orbits. The fifth column gives the computed difference in polarization between the
perturbed orbits. For all angular measurements the Møller raster was operational.

Angular Cut ∆Pθ χ2/dof

θ = 45◦ (1.11 ± 0.06)% 0.17

θ = 90◦ (1.93 ± 0.09)% 1.90

Table 4.14: Amplitude of polarization sensitivity, ∆Pθ, for the two surfaces θ = 45◦

and θ = 90◦.

ear, comparing two equal, yet opposite, beam orbits of amplitude A0 should produce

the same effect as that of a single beam orbit with amplitude 2A0 about the central

orbit. This point is important because by comparing orbits in this way the effect on

the beam polarization can be doubled, and made easier to observe.

The two orbits were selected in some cases to be identical to one another (O1 =

O2 = unperturbed orbit). The measurement of the beam polarization was simply
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made without energizing the deflection magnets. In other cases, the orbits were

selected to be opposing one another. In these cases the deflection magnets were

energized to produce an orbit O1, and the opposing orbit O2 was determined by

reversing the polarity of the two initial deflection magnets. The final two deflection

magnets were adjusted in all cases to best remove the orbit perturbation. The size of

each beam orbit was referenced by a beam position monitor located at the mid–point

of arc 7 to measure the vertical beam position, y1 or y2. Note that neither y1 nor

y2 measure the amplitude of the orbit, but simply provide a measure of the relative

orbit displacement. The orbit–dependent polarization sensitivity can therefore be

referenced by their difference, ∆y = y1 − y2. Results are shown for both rastered

and non–rastered beams in Figure 4.27. The data for the measurements is shown in

Table 4.15. Fitting the results using the linear function ∆P = M0 · ∆y + N0, yield

Figure 4.27: Orbit amplitude dependence of the polarization sensitivity ∆P . In
this case the beam polarization direction is transverse to the accelerator bend plane
(θ = +90◦, φ = +90◦).
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Data Set (θ, φ)meas ∆y ∆ε ∆P

# Measured (mm) ×10−4 %

2† 89.5 , 86.8 0.00 ± 0.13 1.26 ± 1.33 0.20 ± 0.21

3† 89.5 , 86.8 4.24 ± 0.15 10.8 ± 1.12 1.74 ± 0.18

4† 89.5 , 86.8 2.14 ± 0.13 7.04 ± 1.45 1.13 ± 0.23

8 88.6 , 88.4 4.48 ± 0.13 11.9 ± 1.12 1.91 ± 0.18

13 88.6 , 88.4 4.46 ± 0.26 13.6 ± 0.92 2.19 ± 0.15

14 88.6 , 88.4 1.97 ± 0.16 3.08 ± 1.38 0.49 ± 0.22

15 88.6 , 88.4 2.51 ± 0.13 6.87 ± 1.59 1.10 ± 0.26

16 88.6 , 88.4 2.26 ± 0.18 5.77 ± 1.70 0.92 ± 0.27

17 88.6 , 88.4 0.01 ± 0.14 0.35 ± 1.22 0.06 ± 0.20

Table 4.15: The raw and corrected data are shown for the orbit amplitude measure-
ments. The second column gives the measured angular beam polarization orientation
at arc 7. The third column gives the difference in the orbit amplitude measured at the
reference BPM, the fourth column gives the difference in the longitudinal asymmetry
between the perturbed orbits, and the fifth column gives the computed difference
in polarization between the perturbed orbits. The symbol † indicates measurements
without the Møller raster. The other measurements shown used the Møller raster.

the best–fit parameters M0 = (0.39 ± 0.04) %/mm and N0 = (0.08 ± 0.11) %.

A more practical statement of the effect is in terms of the sensitivity observed

for a single beam orbit. To determine this conversion factor, the difference between

O1 and O2 (see Figure D.1 for instance) was considered. The amplitude constructed

from O1−O2 is described by Y0. The relationship between Y0 and the relative vertical

orbit displacement at the reference BPM, ∆y, was determined to be

Y0 = (3.5 ± 0.4) · ∆y. (4.38)

Using this conversion, the sensitivity for this configuration described by a single com-

parable orbit is

∆P = (0.11 ± 0.02)%/mm · Y0 + (0.08 ± 0.11)%. (4.39)
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For example, if the nominal orbit were to acquire a 2 mm amplitude, then the mea-

surable effect would be ∆P = (0.30± 0.15)%. It is clear from the size of N0 that the

uncertainty in the extracted result is comparable to an uncertainty of approximately

1 mm in the comparable single orbit.

4.4.3 Simulation Results for Experiment

A series of simulations were performed to determine if the experimental results could

be reproduced. The simulation of all 18 data sets was performed using the same

method. First, the injector spin rotator setpoints were used to calculate the injector

spin direction, �sinj. Next, the injector spin orientation was rotated by the nominal

accelerator precession, assuming a flat reference orbit for the accelerator and the aver-

age linac energy, Elinac = (420.26 ± 0.26) MeV. This determines the spin orientation

at arc 7, �s7. To calculate the effect of the beam orbit on the spin motion the spin

tracking code murtle spin22 was used.

The model for the spin tracking code is based upon the design model of the ac-

celerator. The design model is defined in terms of the beam optics definitions for use

with the beam tracking program optim [Le99]. This model includes the sequence

of dipole and quadrupole magnets along the arc. The magnetic field values used for

the dipole magnets were determined by scaling their values at the nominal arc 7 mo-

mentum (2.845 GeV/c) to the momentum extracted from beam energy measurements

from the experiment (2.987 GeV/c) for arc 7. The magnetic field values used for the

quadrupole magnets were determined from quadrupole readbacks and calibration data

recorded during the experiment. The deflection magnets were modeled by impulsive

deflections to the unperturbed beam orbit. Simulations using optim were performed

to reproduce measured beam orbit data which were collected from the beam position

monitors.

A first series of simulation results were performed assuming that the reference

orbit for the accelerator was identically flat. In other words, a zero BPM value is
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coincident with the magnetic axis of the quadrupoles. The results, shown in Ap-

pendix D, indicate that this model of the accelerator does not best represent the

flat orbit of arc 7. Further analysis of the numerical spin tracking model revealed

two interesting points. The first reveals that the difference between the model and

measured reference orbit are different, and affect the absolute prediction of the spin

motion. The second reveals that other possible effects in the description or model of

the accelerator during the experiment contribute to an underestimate of the simula-

tion results by 13%. These two points are discussed here and in the final section of

the chapter.

While considering the validity of the spin tracking model an interesting observation

was made regarding the reference orbit of the accelerator. The observation was that

the measured absolute orbit data does not reflect the symmetrical perturbations to the

beam orbit which were introduced by the deflection magnets (see Figure D.1). This

point, at first, does not appear to make a difference, because no matter which orbit is

physically measured, a reproduction (even approximate) of the orbit should (with the

assumption of linearity) lead to the correct observed result when the differences of

the simulations for individual orbits are calculated. However, there is an incongruity

in this assumption when applied generally to the numerical spin tracking model.

It assumes that the reference orbit is either zero, or simply a multiplicative factor

of both perturbed orbits. The reference orbit (unperturbed orbit) in our case was

measured only a few times during the experiment. However, it is neither zero, nor a

multiplicative factor of either orbit. The initial and final measured reference orbits

are shown in Figure 4.28. The lack of symmetry between the orbits, noted earlier

in Figure D.1, is a consequence of the reference orbit(s) shown. When a reference

orbit, Oref , is subtracted from the measured orbit perturbations (for data set #3),

the corrected orbits are formed accordingly,

O′
1 = O1 − Oref

O′
2 = O2 − Oref . (4.40)
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Figure 4.28: The upper plot shows the initial and final reference orbits measured dur-
ing the experiment (over a 4 day period). The lower plots shows that their difference
is comparable to each of the individual reference orbits.

The uncorrected (O1, O2) and corrected (O′
1, O

′
2) orbits are shown in Figure 4.29.

The corrected orbits clearly show the reversal of the deflection magnet strengths. An

overlay of O′
1 with −O′

2 is shown in the upper plot of Figure 4.30. The lower plot

of the same figure indicates that their sum (O′
1 + O′

2) is nearly zero, or that to a

high degree are multiplicative factors of one another. Two important points result.

First, the initial conditions to simulate both orbits are identical (y = y′ = 0) in

this description. They do not require independent initial conditions which effectively

contribute to both the reference orbit and also the perturbed orbit. Second, and more

importantly, the reference orbit, normalized to zero, is consistent with the model used

for the spin tracking simulations. The corrected beam orbits were described using

the beam optics program optim. The deflection magnet values which best reproduce

the corrected orbits were determined. In this case, they are opposite to one another.
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Figure 4.29: The uncorrected orbits (O1, O2) are shown in the two leftmost plots.
The corrected orbits (O′

1, O
′
2) are shown in the two rightmost plots. The results are

from data set #3.

Best fits of the corrected orbit data are shown in Figure 4.31 for data set #3.

Using this orbit correction scheme a reference orbit was subtracted for all of the

data sets. Note, however, that reference orbit data was only measured on three

occasions over the 4 day experiment. As indicated in Figure 4.28, the reference orbit

changed in a substantial way over this time. Unfortunately, more reference orbit data

was not measured. The approach taken was to subtract the reference orbit measured

closest in time to the data set. After applying the orbit corrections, simulations of

the spin tracking were performed.

The spin tracking program numerically integrated the spin motion for the simu-

lated orbits. The initial spin direction in each case was given by �s7 at the beginning

of arc 7. Results from the spin tracking simulations for data set #3 are shown in

Figure 4.32. This case describes the simulated spin difference between two maximum
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Figure 4.30: The upper plot overlays the corrected orbits O′
1 with −O′

2 for data set
#3. The lower plots is their sum, indicating that O′

1 ∼ O′
2 to a high degree.

(yet, opposing) beam orbit perturbations for an initial spin direction transverse to the

accelerator bend plane (θ = +90◦, φ = +90◦). The three plots show the differences

between the three components of the spin orientation between the two orbit pertur-

bations. The plot for δsy shows the difference in the vertical component of the spin

vectors between O′
1 and O′

2. The difference increases gradually along the arc. This is

because the amplitudes of the two simulated orbits are unequal. Consequently, the

spin vectors are rotating away from the vertical direction at different rates from one

another. For ideally opposite orbit perturbations this would not be expected. At

the quadrupole magnet locations δsy changes. The horizontal magnetic field in the

vertical mid–plane of the quadrupole magnets rotate the two spin vectors in oppos-

ing directions. The largest rotations occur at the largest vertical beam displacement

along the arc. Although the changes in δsy are difficult to notice (because they are
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Figure 4.31: Reproducing the corrected orbits for O′
1 and O′

2 are shown in the upper
two plots. The accuracy of the model in reproducing the absolute beam orbit is in
this case better than Figure D.1.

both rotating away from the vertical direction similarly), the corresponding change

in a bend plane spin component, δsz, indicates the quadrupole rotations more clearly.

Note the scale of the plot for δsz is larger by a factor of ten. As the two spin vectors

precess in the dipole magnets, the difference also rotates. This is apparent in the

plot for δsz as a growth in the amplitude of the difference. Consequently, the effect

appears in the plot of δsx as the difference rotates in the bend plane. However, the

quadrupole rotations are not directly apparent because the spin cannot rotate from ŷ

to x̂ by this interaction. Finally, note the zeroes in the amplitude of the oscillations

for δsx and δsz. These locations in the beamline do not represent cancellations of the

effect. Rather, they are simply the locations where the difference in the spin vectors

have rotated to a direction transverse to the component being plotted. This can be
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Figure 4.32: Each plot shows the difference between the spin component between the
two orbit perturbations.

seen as the amplitude of the effect is shifted back and forth between δsx and δsz.

The simulation comparison to the measured effect on the beam polarization pro-

ceeds as described earlier. First, the polarization orientation at the entrance to arc 7

is calculated for all data sets,

�s7(θ, φ) = Ry(ΨI7) · �sinj, (4.41)

where �sinj is the injector spin orientation defined by the polarized gun and spin

rotators. The polarization precession angle between the injector and arc 7 is

ΨI7 =
(

g − 2

2

) (
7.1125 · Elinac

me

)
180◦ = +3720.9◦. (4.42)

The resulting difference between spin orientations between the two orbits is given

by δ�s. The resulting difference is then rotated by the polarization precession angle
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between the end of arc 7 and the polarimeter, given by

Ψ7C =
(

g − 2

2

) (
8.1125 · Elinac

me

)
(−37.517◦) = −290.3◦. (4.43)

Finally, the longitudinal component of the effect is analyzed at the polarimeter. This

result multiplied by the extracted magnitude of the beam polarization, P0, gives

∆Psim = P0 · (Ry(Ψ7C) · δ�s) · ẑ, (4.44)

the simulated effect. The results of the simulation are shown in Figure 4.33. The sim-

ulation results underestimate the measured effect by approximately 25%. Comments

of the simulation results are described in the final section of this chapter.

4.4.4 Comments on Simulation Results

A satisfying result of the previous section is that a consistent approach of the nominal

spin transport model and numerical spin tracking model provide a good starting point

to quantifying the absolute spin motion (beam orbit) in the accelerator. Still, the final

simulation results underestimate the measured effect. This underestimate, though

a discrepancy, reveals the systematic uncertainties which were incorporated in the

simulation. These are described here for comparison.

Foremost, the greatest sensitivity of the simulation results depend upon a consis-

tent model of the beam orbit motion in the accelerator. The results of the previous

section indicate that perhaps the measured reference orbit better describes the aver-

age magnetic center of the quadrupoles than do the absolute beam position data for

the ideal central orbit. Or perhaps the extent to which the reference orbit is orthogo-

nal to the perturbed orbit is the contributing factor. In either case, prediction of the

absolute beam orbit (relative to the numerical spin tracking model) provides approx-

imately a 1 mm uncertainty in the beam position. Added linearly to the measured

effect, this provides at 10–15% systematic uncertainty in the results.

Another important related factor is the uncertainty in the beam position for larger

orbit amplitudes. At larger beam orbit amplitudes (> 2.5 mm) a non–linearity in the
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Figure 4.33: The final simulation results are shown alongside the measured effect and
the initial simulation results.

response signal of the beam position monitors underestimates the beam position. The

non–linearity is quadratic on the vertical mid–plane of the BPMs and may underes-

timate the displacement of the beam position by as much as 5% [De99] (per orbit) at
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the largest beam displacements (7 mm). This effect, of course, contributes most when

the beam position is near an extrema in its orbit. In the cosine–like approximation,

considering the quadratic nature of the underestimate, the effect contributes < 5%

per orbit; or < 7% when comparing two orbits.

Next, the spin tracking program was considered. Simulations performed of the

reference orbit and simple orbit perturbations using the ideal accelerator model agree

well with analytic calculations for the nominal spin transport. This is indicative of the

capability for the spin tracking program to numerically simulate the spin transport.

Although the quadrupole and dipole magnets are included in the numerical spin

tracking model, two effects are not treated; edge focusing due to non–normal entry

of the dipole magnets and the fringe field effects of the quadrupole magnets.

Edge focusing of the main dipole magnets was considered first. The non–normal

entrance to a rectangular dipole magnet (as exists in the arc ) results in a vertical

focusing of the electron beam. This focusing is geometrically similar to the vertical

quadrupole focusing which is predicted to contribute largest to the spin sensitivity

effect. The vertical focusing is given by

1

fy

=
tan( θ0

2
)

ρ0

, (4.45)

where θ0 = 5.625◦ is the nominal non–normal entrance angle to the arc 7 dipole

magnets, ρ0 = 30.57 m is the bend radius for the arc 7 dipole magnets, and fy

is the resulting vertical plane focal length. For the CEBAF arc 7 dipole magnets

fy = 622.3 m. If the beam were displaced to the pole face of the magnet (y ≈ 1.27 cm)

the vertical deflection angle would be θbend = 0.0012◦. The resulting precession of

the spin would be θspin = aγθbend = 0.0081◦. Adding both faces for the 32 dipole

magnets in the arc gives no more than 0.52◦ of precession to the beam polarization.

For comparison, a single typical quadrupole in the arc has a field gradient G ≈

0.50 kG/cm and a length lquad = 0.30 m. Assuming the beam were offset ∆y =

1 cm the corresponding deflection angle would be θbend = Glquad∆y = 0.086◦. The

corresponding precession for the single quadrupole is θspin = 0.58◦. The dipole edge
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focusing is therefore an unlikely candidate, and contributes < 1% to the total focusing.

The fringe field of a quadrupole magnet is considered next. The spin tracking

program treats the quadrupole magnet as hard–edged, so the fringe field is not taken

into account. However, an important point here is that that although the quadrupole

magnet induces a deflection of beam particles, the extent to which the beam changes

position within the magnet is small; this is left to the moment arm of the following

drift space. Therefore, to good approximation, the fringe field of a quadrupole magnet

simply adds to its effective length. For the arc 7 quadrupole magnets (l = 30 cm) the

effective length is approximately one bore radius (1.43 cm) longer. Consequently, the

spin tracking program may underestimate the quadrupole focusing by < 5%.

There are other factors, although they are far less significant. For example, the

quadrupole field profile is not purely quadrupole. This is because the poles of the

magnet are not perfect hyperbolic surfaces. The other contributing multipole fields

have been measured [Ka99] and contribute to < 0.5% of the total field as seen by the

beam. Another effect, which is small at these beam energies, is due to synchrotron

radiation losses. The result is that the beam radiates energy electromagnetically when

deflected; largest in the dipole arc bending magnets. Consequently, the spin tune is

reduced. However, an estimate of this effect for an entire arc gives the reduction in

spin tune to be < 10−3%.

In conclusion, the factors which effect the sensitivity of the beam polarization

studied here are those which have the largest impact on the vertical beam focusing.

These include the model of the absolute vertical orbit and an accurate description of

the vertical focusing EM fields.
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Chapter 5

Conclusions

5.1 Summary of Experiment

This experiment studied the sensitivity of the beam polarization to the beam orbit in

the recirculation arcs of the CEBAF accelerator. Simulations predict the sensitivity

to be due to an interaction of the vertical component of the beam polarization with

the horizontal magnetic fields in the vertical plane of quadrupole magnets along the

arc. This interaction causes the beam polarization to rotate by an amount calculated

to be ≤ 0.05◦ at each quadrupole. A coherence condition results when the interaction

of the spin precession frequency (νs) and the oscillation frequency of the vertical

component of the beam orbit (νy) are similar. With this condition satisfied, the

rotations of the beam polarization add, generating a larger net effect. Specifically,

arc 7 was chosen for the study because near the nominal design energy for arc 7

(EArc7 = 2.845 GeV) νs ≈ νy = 3. Simulations predict a 1% effect to the beam

polarization for the experiment described.

To perform the experiment a modification and calibration was made to the injec-

tor spin rotators to increase the polarization orientation range to ≥ 2π. A injector

Mott polarimeter in the 5 MeV region of the accelerator measured two components

of the electron beam polarization before it was transported to the main accelera-

tor. A set of deflecting magnets to create, and subsequently remove, an isolated

perturbation to the vertical beam orbit in arc 7 were installed. The magnet controls
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interleaved two different orbit perturbations in 120 second intervals for many hours

reliably. Mis–alignments of the deflection magnets kept coupling of the perturbation

into the horizontal orbit suppressed by a factor better than 20:1. A Møller polarime-

ter was used to measure the longitudinal component of the beam polarization of the

electron beam following arc 7, after it was extracted from the accelerator. Correlated

position motion of the beam near the polarimeter target to the orbit perturbations

was kept within ∆x ≤ 200 µm and ∆y ≤ 50 µm. This was verified with beam position

monitoring sampled during each 120 second interval, and separately by an indepen-

dent measurement of the beam profile using a beam wire scanner. Experimental

asymmetries were measured using Møller scattering to determine the longitudinal

component of the beam polarization. To measure the predicted polarization sensitiv-

ity a relative difference in the beam polarization was measured between the two orbit

perturbations. Measurements of the beam position and profile near the polarimeter

target were made. These led to estimates of polarimeter systematics which may af-

fect the results of the experiment. An absolute measure of the beam polarization

was not required for this experiment. False asymmetries due to target depolarization

by target heating, or the sensitivity of the polarimeter analyzing power due to beam

profile or orbit variation, are shown to be small. A beam rastering system was used at

the polarimeter target to suppress the target depolarization. Estimates indicate that

the target depolarization was absolutely reduced by at most 3%. The variation with

orbit perturbation was determined to be ≤ 0.1%. Simulations were performed using

a Monte Carlo program used for the polarimeter design to estimate the dependence of

the effective analyzing power Azz to the beam orbit perturbations. Results indicate

that the relative effect for target rastering and correlated spot motion is ≤ 0.4%.

Total systematic uncertainties correlated to the orbit perturbations are < 0.5%.

The experiment measures two effects. First, the polar angles of the beam polar-

ization at arc 7 were varied. The sin(φ) dependence agreed reasonably well with the

model. However, the expected sin(θ) dependence was not accurately predicted (using

only one type of reference orbit for both surfaces in θ) by the the simulation. The
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experimental disagreement of the sin(θ) dependence is approximately 17%. Although

the sin(φ) dependence describes the angular polarization orientation, the sin(θ) de-

pendence describes both the angular orientation and orbit amplitude sensitivities.

Because the dependence of the polarization sensitivity is correlated strongly to the

absolute knowledge of the beam position for the orbit perturbations, it is more likely

that the average reference orbit during the θ = 45◦ and θ = 90◦ measurements are

different. However, without more reference orbit data it is not possible to confirm

this hypothesis. The angular polarization orientation is fairly well understood at arc

7, particularly from the spin rotator calibration data and the consistent results from

the spin precession energy measurement. If the polarization orientation at arc 7 were

largely mis–understood a sin(φ) dependence would also be observed, and this is not

the case.

Second, the dependence upon the amplitude of the orbit perturbation was mea-

sured for a fixed transverse polarization orientation. The measurement of the small

polarization effect was determined to increase with orbit amplitude. The scaling is

consistent with the linear model predicted for the ideal accelerator. The measur-

able component of the effect for the conditions in this experiment indicate that the

sensitivity of the polarization to the beam orbit is (0.11 ± 0.02) %/mm with an un-

certainty of (0.08 ± 0.11)%. For the conditions of this experiment this corresponds

to a 1–2 % of the total polarization being projected into the longitudinal direction at

the experimental hall.

5.2 Spin Transport Prediction Capability

The spin transport for the accelerator was described in terms of an analytic spin

transport model and a numerical spin tracking model. Measurement of the total

precession in the accelerator, using the analytic spin transport model, determined

the beam energy to be (3407.23 ± 4.08) MeV. Measurement of the beam energy by

an independent method (Hall C spectrometer method) determined the beam energy
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to be (3411.37 ± 0.85) MeV, providing excellent agreement with the analytic spin

transport model.

The spin tracking program murtle spin22 was used to simulate the spin mo-

tion of the electron beam orbit in recirculation arc 7. Simulations performed of the

reference orbit and simple orbit perturbations using an ideal accelerator model agree

well with analytic calculations for the analytic spin transport calculation. This is

indicative of the capability for the spin tracking program to numerically simulate the

spin transport.

Spin tracking simulations were performed using a model of the accelerator for

comparison with the measured effects. Indeed, a predicted weak sensitivity of the

beam polarization to the beam orbit was observed. The accelerator model provided

only approximate reproducibility of the absolute measured beam orbit. However, the

model does provide a much better description for corrected beam orbits. This point,

not expected in the first stage of the analysis, led to a poor simulation reproduction

of the measured beam orbits, and spin tracking predictions different by a factor of 2

from what was measured (see Appendix D). Subsequent analysis included an orbit

correction scheme, subtracting the best–known measured reference orbit from the

measured perturbed orbit. This final description yielded a consistent approach to

applying the accelerator model. Consequently, the predictive power of the numerical

spin tracking simulations improved. The final simulation results underestimate the

measured effect by only 20–30%. However, estimates of the model indicate that the

simulation results may be expected to underestimate the effect by 13%. Further, the

simulation limit for reproducing the measured beam orbit by better than 1 mm in

some locations along arc 7 incurs a systematic uncertainty in the simulation result by

approximately 10–15%.

Lastly, spin tracking simulations were performed to estimate the depolarization

phenomenon due to the finite emittance of the beam. Using the ideal accelerator

model, the predictions indicate the depolarization to be entirely negligible at the

present accelerator energies. To the extent that such a small loss in polarization
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cannot be measured absolutely between the injector and experimental end station,

no such loss in polarization was found.

5.3 Considerations for Accelerator Energy Upgrade

Although no discernible loss in beam polarization was identified in the CEBAF accel-

erator at the present operating energies, this issue may be more seriously questioned

when the accelerator energy is upgraded.

The simulations for the accelerator design were performed for a maximum accel-

erator energy of 4.045 GeV. However, the maximum energy has already exceeded

5.5 GeV and plans to upgrade the design energy of the accelerator to 12 and then

finally 24 GeV already exist. Synchrotron radiation losses of the electron beam grow

like E4/ρ where E is the beam energy and ρ is the bending radius. For the CEBAF

accelerator the bending radius remains constant, and at 24 GeV the synchrotron ra-

diation losses increase by more than 103 from what they are presently. Consequently,

the beam quality (emittance, beam optics) may be different and issues for depolar-

ization phenomena should be considered in more detail.

Finally, the nominal precession of the accelerator would increase substantially.

For example, at 24 GeV the first recirculation arc would have a spin tune νs = 2.99,

almost identical to the present vertical betatron tune νy = 3.0. The precession for

the entire accelerator at this energy would increase to more than 150 revolutions.

Consequently, beam energy measurements (perhaps even for the energy stability)

will have an improved resolution due to the increase in γ.

5.4 Suggestions for Future Work

This was an interesting experiment; the first opportunity to study the weakest regime

of a polarization “resonance”. The experiment revealed that the predictive capability

for such accelerators can clearly be made, however, an accurate absolute model is
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required to do so. It would be an interesting pursuit to determine the parameter(s) in

the present model of the CEBAF accelerator which better describe both the absolute

beam orbit and consequently, the polarization sensitivity. With such a model, spin

tracking could readily be employed to improve present, or design future, accelerators,

carefully optimizing the maximum required beam polarization. If a similar experiment

were again undertaken more emphasis would be placed on characterizing the beam

orbit (and reference orbit) with a better absolute model. A more modest emphasis

would be placed on the systematics for this particular polarimeter. A further minor

reduction in the target polarization, for instance, with an increased beam current

would only increase the figure of merit. The improvement in the statistics of the

measurement would allow for more study of different beam orbits. Practically, this

may be complicated due to the radiation background generated downstream of the

polarimeter with increased beam current, however, it may reveal more about the

accelerator.
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Appendix A

Total Accelerator Precession

The spin transport model and experience at the CEBAF accelerator indicate the

precession of the beam polarization remains in the bend plane of the accelerator to a

large extent (within a few degrees). The precession in the bend plane of the accelerator

can then be written as the sum of three terms; (a) a Wien filter spin rotation θWien;

(b) the precession in the first N recirculation arcs ψN due to the deflection of the

beam momentum in each; (c) and the final precession in a transport arc ψHall due to

the deflection of the beam momentum to an experimental hall. The total precession

is then

ψTotal = θWien + ψN + ψHall. (A.1)

The Wien filter is simply a spin rotator and for the rest of this discussion θWien = 0

arbitrarily. The precession terms for recirculation and extraction simply depend upon

the beam energy and bending angle of each recirculation and transport arc. The

steps to do this are simple algebra, yet pedantically shows how the entire machine is

summed–up. The energy in the nth recirculation arc (in MeV) is

En = Einjector + n · Elinac, (A.2)

where Einjector is the energy of the injector and is always set to a specific fraction of

the linac energy, i.e., Einjector = αElinac (α = 0.1125). Elinac is the average energy of

both linacs. Combining these yield

En = (α + n) · Elinac. (A.3)
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The bend angle of each recirculation arc is θbend = π. By applying Equation 2.6

repeatedly the precession in the first N recirculation arcs is given by

ψN =
N∑

n=1

a
(

En

mec2

)
π

=
aπElinac

mec2

N∑
n=1

(α + n). (A.4)

By using the Euler’s relation,
∑N

n=1 n = N(N+1)
2

, the precession is compactly written

as

ψN =
aπElinac

mec2

(
αN +

N(N + 1)

2

)
. (A.5)

When the beam is extracted after the N th recirculation arc (N = 1, 3, 5, 7, 9) a final

pass of the south linac increases the beam energy prior to an extraction transport arc

to

EHall = (α + N + 1) · Elinac. (A.6)

The bending angles for the three experimental halls are given in Table A.1 in units

of degrees and units of π, that is, θHall = θ̂Hallπ. The precession in the transport arc

θHall Hall A Hall B Hall C

(deg) +37.50 ◦ +0 ◦ −37.52 ◦

(rad) +0.2083 π +0 π −0.2084 π

Table A.1: The bending angle for the three experimental halls. Halls A and C are
symmetrical to one another about Hall B.

to a given experimental hall is,

ψHall = a
(

EHall

mec2

)
θHall

=
aπElinac

mec2
(α + N + 1) · θ̂Hall. (A.7)

By summing ψN and ψHall,

ψTotal =
aπElinac

mec2

[
Nα +

N(N + 1)

2
+ (α + N + 1)θ̂Hall

]
. (A.8)
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Since the beam can only be extracted after full circuits, or passes, of the accelerator

it is more convenient to write this result in terms of the pass number p. It is easy to

convince oneself that the last recirculation arc, N , seen by the beam for p passes is

given by the relationship N = 2p − 1. Making this substitution we have finally

ψTotal =
aπElinac

mec2

[
2p2 − p(1 − 2θ̂Hall − 2α) − α(1 − θ̂Hall)

]
. (A.9)
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Appendix B

Calculation of Injector Spin Rotator Angles

The product of the rotations of the three spin manipulators transforms the polar-

ization vector at the electron gun, �PGun, to a polarization vector exiting the spin

manipulation system, �PSM ,

�PSM = Rz(φSolenoid2) · Rz(φSolenoid1) · Ry(θWien) · �PGun, (B.1)

The rotation matrices about the ith (i ∈ x, y, z) axis are given by Rx(θ), Ry(θ), and

Rz(θ). A positive rotation

Rx(θ) =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 ,

Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 ,

Rz(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 . (B.2)

angle is given by the right–hand rule. Because the rotations in the two solenoid

magnets are about the same axis and are in series they commute, where φS12 =
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φSolenoid1 + φSolenoid2, giving,

�PSM = Rz(φS12) · Ry(θWien) · �PGun

=


cos θWien cosφS12 − sin φS12 sin θWien cosφS12

cos θWien sin φS12 cosφS12 sin θWien sin φS12

− sin θWien 0 cos θWien

 · �PGun. (B.3)

For the case �PGun = (0, 0,±P0) we find the trivial solution,
Px

Py

Pz


SM

= P0


sin θWien cos φS12

sin θWien sin φS12

cos θWien

 , (B.4)

because the Wien filter and solenoids produce simple rotations in the standard spher-

ical coordinate system. The condition for setting the rotation angles of the spin

manipulator involves choosing (θWien, φS12) such that a final polarization, �Pfinal, is

reached in an experimental area. The final polarization is determined by all of the

intervening spin rotations (about 3 possible axes) of the accelerator. The final polar-

ization can be written as the product of N additional rotations,

�Pfinal =
N∏

j=1

(
Rij(θj)

)
· �PSM , (B.5)

where the jth rotation is due some precession θj about the ith axis. If the simple spin

transport model for the accelerator is correct then this product of rotations due to

the recirculation and transport arcs are all about the same ŷ axis. In this case, all of

the rotations commute and add simply giving,

�Pfinal = Ry(Θ) · �PSM ,

= P0


cos Θ 0 sin Θ

0 1 0

− sin Θ 0 cos Θ

 ·


sin θWien cos φS12

sin θWien sin φS12

cos θWien

 ,

= P0


sin θWien cosφS12 cos Θ + cos Θ sin θWien

sin θWien sin φS12

− sin θWien cosφS12 sin Θ + cos Θ cos θWien

 , (B.6)
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where Θ =
∑N

j=1 θj is the net sum of bending angle through which the beam mo-

mentum was deflected in the accelerator. These equations and the conditions that

|�Pfinal| = 1 determine (θWien, φS12).

The most trivial solution is for the case where the final polarization is to be

longitudinal at the experimental area (�Pfinal = ±P0ẑ). The solution then gives that

φS12 = 0 (polarization in bend plane and θWien = −Θ (modulo 2π).
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Appendix C

Solenoid Magnets: Focusing and Spin Rotation

Because the beam transport through the injector should remain constant it is neces-

sary to find a solution that allows the focal lengths of the two solenoid spin rotators

to remain constant (maintaining the injector optics) while the spin rotation angle

Θspin of each can be varied.

Consider the halves of the solenoid magnet. Each half contains a coil; the first

(second) coil referred to as A (B). The wiring of the coils is such that the longitudi-

nal magnetic field, Bz, produced by each coil for positive current, point in opposite

directions. As an example, consider the longitudinal magnetic field profile for this

situation in the upper plot of Figure C.1. The lower plot of the same figure shows

the square of the magnetic field profile, B2
z , which determines the focal length of the

magnetic. Because the magnetic field profile due to each coil scales linearly with the

peak magnetic field (or coil current) the total spin rotation of the magnet can be

written as

Θspin =
ge

2mvγ
·
∫

Bzdl

=
ge

2mvγ
·
∫

(BzA + BzB)dl

=
ge

2mvγ
· (

∫
BzAdl +

∫
BzB)dl

= B̃A · G1 + B̃B · G2, (C.1)

where B̃A, B̃B are the peak magnetic fields of each solenoid profile and G1, G2 absorb
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Figure C.1: Magnetic field orientation profile for one of the injector solenoid spin
rotators with positive current in each of the two coils.

the field integral of the magnet.

Similarly, an expression for the inverse focal length can be written as

Ffocus =
e2

(2mvγ)2
·
∫

B2
zdl

=
e2

(2mvγ)2
·
∫

(BzA + BzB)2dl

=
e2

(2mvγ)2
· (

∫
B2

zAdl + 2
∫

BzABzBdl
∫

B2
zBdl)

= H1 · B̃A

2
+ 2H12 · B̃AB̃B + H2 · B̃B

2
, (C.2)

where B̃A

2
, B̃B

2
are the peak magnetic field squared of each solenoid profile and

H1, H2 absorb the field integral of the magnet. However, because the total integral

adds the field profiles in quadrature a cross–term exists relating them. This non–

linear overlap provides the condition for meeting both the constant focal length and
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variable spin rotation requirements. The results of the two equations can be solved

to determine the the two peak fields B̃A and B̃B in terms of the fixed focal length

strength. The coefficients are found by using a field map of the solenoid magnet or

simulating the profile using a codes like poisson / superfish [Me87].

Using the design focal length for each of the two spin rotators in the injector the

set of peak fields (and magnet currents) are calculated in terms of the possible spin

precession in each magnet. Simulation plots of Θspin as a function of the current

in each half of the solenoid magnet are shown in Figure C.2 for both solenoid spin

Figure C.2: Current setpoints for S1 (upper) and S2 (lower) solenoid spin rotators.
In each plot the upper curve is for the first coil (A) and the lower curve is for the
second coil (B) in the magnet.

rotators. The coefficients for the first solenoid rotator (S1) are G1 = −G2 = 1.2166,

H1 = H2 = 0.308, and H12 = −0.1506. The coefficients for the second rotator (S2) are
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G1 = −G2 = 3.2066, H1 = H2 = 2.1036, and H12 = −0.1052. It is clear that the spin

rotation angle is zero when the coil currents are equal (coils drive current in opposing

directions). Again, refer to Figure C.1 for an example of this case. The integral of the

asymmetrical curve in the upper plot is clearly zero, and determines Θspin, yet the

integral of the lower plot is non–zero, and determines the magnet focusing. Finally,

upper bound of the spin rotation in each magnet is limited to the extent that the

geometry of the magnet overlaps the two field profiles. For this magnet design that

maximum precession angle is ≈ 45◦.
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Appendix D

Simulation Results for the Flat Reference Orbit

Reproducing the absolute measured beam orbit proved difficult. By varying the

vertical position and angle of the beam orbit at the entrance to arc 7 (y0, y
′
0) beam

optics simulations improved reproducing the beam position data. Nevertheless, the

overall reproducibility of the measured beam orbit indicates that the optics model

used for describing the arc does not reproduce the absolute beam orbit very well. An

uncertainty of approximately 1 − 2 mm is associated with this method.

To perform spin transport simulations the optim model description was converted

to a transport description for use with the spin tracking program. A simulation

result for reproducing both orbits (O1 and O2) is shown in Figure D.1. Also shown

in their calculated difference (O1 − O2). Two points are are clear. First, the initial

beam conditions entering the arc which best describe the individual beam orbits are

artificial. That is, they are different from one another which physically is not true.

However, these initial conditions best describe the absolute orbit within the arc and

were pursued during this stage of the analysis. Second, the difference plot indicates

that the betatron phase between the simulated and measured orbit is not constant.

This may indicate that the focusing description of the model does not entirely describe

the real condition. Note particularly that there are locations where the simulated and

measured position of the beam fall on opposite sides of the bend plane (y = 0). In

sum, these two points affect the simulated spin rotations for both orbits.

Using the analysis technique described in Section 4.4.3 and Section 4.4.2 a com-
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Figure D.1: Reproducing the absolute orbits for O1 and O2 are shown in the upper
two plots. The accuracy of the model in reproducing the absolute beam orbit is
approximately 1 − 2 mm.

parison between the experiment and simulation is made for the ideal flat reference

orbit. The results are shown in Figure D.2. The simulations underestimate the mag-

nitude of the effect by approximately a factor of 2 in most cases. The expected sin(φ)

angular dependence is correctly given, however, the sin(θ) dependence (which mea-

sures the strength of the effect) also gives an underestimate. The discrepancy of the

simulation with the experiment was, at first, surprising.

The initial approach to distinguish the source of the underestimate began by sep-

arating the nominal transport model from the numerical spin tracking model. An

observation made of the initial spin transport model is that only a component of the
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Figure D.2: The measured polarization sensitivity is shown alongside the simulation
results for all of the experiment data.

simulation effect is resolved at the polarimeter. In other words, |δ�s| > |δ�smeas|. To

make this point three quantities are compared; (a) the magnitude of the simulation

effect, |Psim|; (b) the measurable component of the simulation effect, |Psim|Møller; (c)
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and the data for the experiment |∆P |. The three quantities are plotted in Figure D.3.

Although the measurable component of the simulation is smaller than the experimen-

Figure D.3: Comparison of the relative size of the total, |Psim|, and projected,
|Psim|Møller, simulation effect with data for the experiment.

tal results, it is clear that the magnitude of the total simulation effect is largest in all

non–zero cases. For the null effect, the results are comparable with the uncertainty

of the measurement.

This observation is consistent with a geometrical scale factor. In other words, a

rotation of the simulation effect, δ�s, can increase or decrease the measurable effect.

Consequently, calculations were performed to determine if a single rotation (simplest

case) of the simulation results could account for the discrepancy. A rotation in the

accelerator bend plane was considered foremost because the factor would need to be

large, approximately a factor of 2. It was determined that a single rotation of ≈ +14◦,

applied finally to all simulations results, improved the prediction of the measurement

substantially. A comparison is made in Figure D.4 where the rotation has already
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been applied to all of the simulation results.

Figure D.4: The measured polarization sensitivity is shown alongside the simulation
results (rotated by ≈ +14◦ẑ) for all data sets.

The important point to consider is whether the nominal spin transport model
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of the accelerator is consistent with this explanation. If the nominal spin transport

model is considered as the source of the discrepancy, the most likely explanation

requires that the precession of the accelerator was different by the rotation angle,

+14◦. Accounting for a +14◦ precession difference of the nominal spin transport, even

at the greater arc beam energies (larger γ), in the CEBAF accelerator is difficult. The

effect would have to appear following the orbit perturbations in arc 7, as the result

depends upon the difference. If the excess precession were gained gradually through

the earlier part of the accelerator, then the spin direction at the beginning of arc

7 would have been different than expected. The sin(φ) dependence would then be

modified, and this was not observed in the data. Further, simulations were performed

to vary the spin orientation at arc 7 by amounts comparable with a +14◦ rotation.

No substantial improvement was found. Consequently, this is an unlikely cause of the

discrepancy.

The alternative is that the excess precession would appear following the orbit

perturbations. For example, the corresponding dipole deflection angle required to

explain the rotation in arc 7 (2.989 GeV) is an additional +1.81◦. In the Hall C

arc (3.409 GeV) an additional +2.06◦ deflection angle is required. Both explanations

represent more than a 1% correction to the transport arc bend angle. Similarly, more

than a 1% correction to the beam energy is required to generate the +14◦ precession

for the given bend angles. Such large corrections are simply inconsistent with the

operation of the accelerator. Perhaps an even more satisfying result, of the nominal

spin transport model, is the excellent agreement of the final beam energy determined

by the spin precession technique with alternative methods used during the experiment.

Such a result is in direct conflict with the explanation being a discrepancy of the

nominal spin transport model. The conclusions of Chapter 4, rather, do indicate

that the absolute knowledge of the beam orbit relays the information required to

consistently describe the absolute spin motion of the beam polarization.
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